首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific binding of the anticoagulants heparin and antithrombin III to the blood clotting cascade factor human thrombin was recorded as a function of time with a Love-wave biosensor array consisting of five sensor elements. Two of the sensor elements were used as references. Three sensor elements were coated with RNA or DNA aptamers for specific binding of human thrombin. The affinity between the aptamers and thrombin, measured using the biosensor, was within the same range as the value of K(D) measured by filter binding experiments. Consecutive binding of the thrombin inhibitors heparin, antithrombin III or the heparin-antithrombin III complex to the immobilized thrombin molecules, and binding of a ternary complex of heparin, anithrombin III, and thrombin to aptamers was evaluated. The experiments showed attenuation of binding to thrombin due to heparin-antithrombin III complex formation. Binding of heparin activated the formation of the inhibitory complex of antithrombin III with thrombin about 2.7-fold. Binding of the DNA aptamer to exosite II appeared to inhibit heparin binding to exosite I.  相似文献   

2.
We have developed a novel automated system to analyze protein complexes by integrating a surface plasmon resonance (SPR) biosensor with highly sensitive nanoflow liquid chromatography-tandem mass spectrometry (LC-MS/MS). A His-tagged protein, which is also tagged with FLAG and biotinylated sequences, was expressed in mammalian cells. After purification by using the His tag from the cell lysate, the sample protein mixture was applied to an SPR biosensor and the protein complex was captured on the sensor chip. The automated SPR-LC-MS/MS was then performed: (1) two-step on-chip purification of the protein complex by using the FLAG and the biotinylated tags, (2) on-chip protease digestion of the complex, and (3) online nanoflow LC-MS/MS analysis of the resulting peptide fragments for protein identification. All of these processes could be monitored in real-time by the SPR biosensor. We validated the performance of the system using either FK506-binding protein 52 kDa (FKBP52) or ribosomal protein S19 (rpS19) as bait. Thus, the fully automated SPR-LC-MS/MS system appeared to be a powerful tool for functional proteomics studies, particularly for snapshot analysis of functional cellular complexes and machines.  相似文献   

3.
Biomolecular interaction analysis mass spectrometry (BIA/MS) is a multiplexed analytical technique that utilizes a unique combination of surface plasmon resonance (SPR) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection and analysis of small amounts of proteins residing in complex biological systems. In order to achieve high sensitivity during BIA/MS, certain experimental parameters and sequences of events need to be optimized and maintained. Immobilized ligand density, flow rate and biosensor control (in SPR-BIA) and matrix choice and application (in MALDI-TOF MS) have significant influence on the final outcome of the BIA/MS analysis and, consequently, need to be optimized and carefully controlled. In addition, chip washing and cutting are essential in converting the SPR-active sensor chips into target surfaces amenable to MALDI-TOF MS. Reviewed here are the prerequisites for successfully interfacing SPR-BIA with MALDI-TOF MS.  相似文献   

4.
The molecular interactions between components of the heparin-catalyzed antithrombin III/thrombin reaction were investigated by light scattering. When heparin was added to antithrombin III, the molecular weight increased to a maximum and then decreased to that of a 1:1 (antithrombin III X heparin) complex. The initial molecular weights at low heparin to antithrombin III ratios were consistent with the formation of a 2:1 (antithrombin III X heparin) complex in which only one antithrombin III molecule had undergone the conformational change measured by protein fluorescence enhancement. The peak molecular weight never reached that of a complete 2:1 complex. This behavior was observed for bovine and human antithrombin III in the presence of both unfractionated heparin and high molecular weight-high affinity heparin. Pentosane polysulfate also caused some multiple associations. Bovine antithrombin III and thrombin formed a 1:1 complex that underwent further aggregation within minutes, while the human proteins did not aggregate on this time scale after forming the 1:1 complex. In the presence of stoichiometric amounts of heparin, the bovine proteins formed an initial complex of Mr = 230,000 (corresponding to a dimer of heparin-antithrombin III-thrombin) which underwent further aggregation. The human proteins, however, formed a 1:1 (antithrombin III X thrombin) initial complex in the presence of heparin, followed by aggregation. These interactions of thrombin and antithrombin with heparin suggest complex interactions that could relate to heparin function.  相似文献   

5.
Association of thrombin-antithrombin III complex with vitronectin in serum   总被引:3,自引:0,他引:3  
Purification of vitronectin by identical procedures from serum instead of plasma results in the coisolation of an additional protein component with mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 82 kDa. We show that this component is the thrombin-antithrombin III complex based on the following evidence. Similar to a complex constructed using purified thrombin and antithrombin III, the 82-kDa component has a reduced molecular size of 69 kDa if it is not boiled prior to SDS-PAGE. Upon prolonged boiling in SDS it dissociates into 56- and 32-kDa components which co-migrate in SDS-PAGE with purified antithrombin III and thrombin, respectively. The 82- and 56-kDa components react with an antiserum against antithrombin III, and an antiserum prepared against the 82-kDa complex reacts with purified antithrombin III. Thrombin-antithrombin III complex, from either serum or recalcified clotted plasma, bound to vitronectin immobilized on Sepharose or plastic. However, purified antithrombin III which had not reacted with thrombin lacked affinity for vitronectin as did antithrombin III from citrated plasma. Purified antithrombin III acquired affinity for immobilized vitronectin if it was complexed with thrombin or was modified by radioiodination. Binding of vitronectin to antithrombin III coated on plastic was demonstrated using enzyme-linked immunosorbent assay. These results demonstrate that vitronectin binds thrombin-antithrombin III complexes through a cryptic site in antithrombin III which can be exposed when antithrombin III is radioiodinated, bound to plastic, or complexed with thrombin. Since vitronectin can interact with cells, the binding of vitronectin to the thrombin-antithrombin III complex may serve to facilitate the interaction of this complex with cell surfaces.  相似文献   

6.
7.
The rate of the reaction between thrombin and antithrombin III is greatly increased in the presence of heparin. Several mechanisms for this effect are possible. To study the problems commercial heparin was fractionated into one fraction of high anticogulant activity and one of low anticoagulant activity by affinity chromatography on matrix-bound antithrombin III. The strength of the binding of the two heparin fractions to antithrombin III and thrombin, respectively, was determined by a crossed immunoelectrophoresis technique. As was to be expected, the high activity fraction was strongly bound to antithrombin III while the low activity fraction was weakly bound. In contrast, thrombin showed equal binding affinity for both heparin fractions. The ability of the two heparin fractions to catalyse the inhibition of thrombin by antithrombin III was determined and was found to be much greater for the high activity heparin fraction. A mechanism for the reaction between thrombin and antithrombin III in the presence of small amounts of heparin is suggested, whereby antithrombin III first binds heparin and this complex then inhibits thrombin by interaction with both the bound heparin and the antithrombin III.  相似文献   

8.
The feasibility of buffer exchange in biosensor chip mass spectrometry, along with the construction of base sensor chips and use of alternative chip chemistries, is demonstrated in this work. Beta-2-microglobulin (beta2m) was used as an analyte and captured in the first flow cell (FC1) on the sensor chip surface by an immobilized anti-beta2m antibody. Low pH buffer was then used to elute the captured analyte from the flow cell and route it to a second flow cell (FC2) downstream that served as a cation exchanger that retains the analyte. Following additional washes in FC1, the analyte present in FC2 was either eluted with a higher pH buffer (to demonstrate the possibility of elution into a downstream trypsin flow cell), or it was subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis to verify its presence in FC2. In a separate experiment, a gold-sputtered glass slide (base chip) was activated through a formation of 11-mercaptoundecanoic acid self-assembled monolayer and via reaction with 1,1"-carbonyldiimidazole. The activated chip was placed manually into the biosensor and two surfaces (flow cells) were derivatized with antibodies to beta2m and cystatin C (cysC). To evaluate the chip performance, diluted human urine aliquot was injected over the flow cells. Following the surface plasmon resonance analysis, the chip was MALDI-TOF MS analyzed, yielding signals from beta2m and cysC from their respective flow cells. Artifacts arising from the surface chemistries were not observed in the analysis.  相似文献   

9.
Properties of thrombin- and elastase-modified human antithrombin III   总被引:3,自引:0,他引:3  
P Gettins  B Harten 《Biochemistry》1988,27(10):3634-3639
Proteolytically modified forms of human antithrombin III have been prepared by reaction of native antithrombin with thrombin, human neutrophil elastase, or porcine pancreatic elastase. These forms have two chains disulfide linked and are of the same molecular weight as native antithrombin III. 1H NMR spectroscopy has been used to characterize these proteins and to compare them to one another and to native antithrombin III. The three modified proteins have very similar NMR spectra and histidine residues with identical pH titration parameters, and they undergo the same spectral changes upon binding heparin. They differ from native antithrombin III in all of these respects. In addition, the proteins are much more stable than native antithrombin III. The three modified proteins behave identically as a function of temperature; at 372 K, 44 K above the unfolding temperature for native antithrombin III, the proteins are still folded and possess approximately 70 unexchanged amide protons even after several hours. The unfolding of the heparin binding domain at low concentrations of deuteriated guanidine hydrochloride seen in native thrombin III is absent in the modified forms. It is concluded that the thrombin- and elastase-modified forms of antithrombin have identical structures when allowance is made for the slightly different sites of cleavage by the two types of elastase and by thrombin. This structure is very different from that of native antithrombin III.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The endothelial cell surface provides a receptor for thrombin-designated thrombomodulin (TM) which regulates thrombin formation and the activity of the enzyme at the vessel wall surface by serving as a potent cofactor for the activation of protein C by thrombin. Heparin-like structures of the vessel wall have been proposed as another regulatory mechanism catalyzing the inhibition of thrombin by antithrombin III. In the present study, the interaction of antithrombin III with the thrombin-TM complex and its interference with heparin and polycations were investigated by using human components and TM isolated from the microvasculature of rabbit lung. Purified TM bound thrombin and acted as a cofactor for protein C activation. The addition of heparin (0.5 unit/mL) to the reaction mixture interfered neither with the binding of thrombin to TM nor with the activation of protein C. However, the polycations protamine (1 unit/mL) as well as polybrene (0.1 mg/mL) affected the thrombin-TM interaction. This was documented by an increase in the Michaelis constant from 8.3 microM for thrombin alone to 19.5 microM for thrombin-TM with the chromogenic substrate compound S-2238 in the presence of 1 unit/mL protamine. When the inhibition of thrombin by antithrombin III was determined, the second-order rate constant k2 = 8.4 X 10(3) M-1 s-1 increased about 8-fold in the presence of TM, implying an accelerative function of TM in this reaction. Although purified TM did not bind to antithrombin III-Sepharose, suggesting the absence of heparin-like structures within the receptor molecule, protamine reversed the accelerative effect of TM in the inhibition reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Heparin was fractionated by affinity chromatography on immobilized antithrombin III followed by gel filtration on Sephadex G-100. Eighteen fractions were obtained ranging in molecular weight from 9,700 to 34,300 as determined by sedimentation equilibrium. The binding stoichiometries of antithrombin III and thrombin interactions with the heparin of these fractions were measured, using changes in intrinsic and extrinsic fluorescence. Catalytic activity also was measured for each of the heparin fractions. As the molecular weight of heparin varied from about 10,000 to 30,000, the average number of antithrombin and thrombin sites/heparin molecule varied from 1.0 to 2.1 and 2.4 to 6.8. In addition, the molar specific activity increased 5.7-fold, an increase which correlated directly with the product of the number of antithrombin III and thrombin molecules bound. Thus as the number of bound molecules increased with increased molecular weight, the rate of reaction/bound antithrombin III increased in proportion to the number of bound thrombin molecules and vice versa. This can be explained by assuming that heparin functions as a template for both proteins, that all bound thrombin and antithrombin III molecules are accessible to each other, and that the rate at which a bound molecule reacts is proportional to the number of molecules of its interacting counterpart bound. These observations and conclusions are similar to those of Hoylaerts et al. (Hoylaerts, M., Owen, W. G., and Collen, D. (1984) J. Biol. Chem. 259, 5670-5677), who demonstrated that the rate at which single molecules of antithrombin III, covalently attached to heparin, react increases as the thrombin binding capacity (chain length) of heparin increases.  相似文献   

12.
Natsume T  Taoka M  Manki H  Kume S  Isobe T  Mikoshiba K 《Proteomics》2002,2(9):1247-1253
We describe a rapid analysis of interactions between antibodies and a recombinant protein present in total cell lysates. Using a surface plasmon resonance biosensor, a low concentration of glutathione-S-transferase (GST) fused protein expressed in small scale Esherichia coli culture was purified on an anti-GST antibody immobilized sensor chip. The 'on-chip purification' was verified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry by measuring the molecular masses of recombinant proteins purified on the sensor chip. The specific binding of monoclonal antibodies for the on-chip micropurified recombinant proteins can then be monitored, thus enabling kinetic analysis and epitope mapping of the bound antibodies. This approach reduced time, resources and sample consumption by avoiding conventional steps related to concentration and purification.  相似文献   

13.
To evaluate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) as a tool for rapid identification of common clinical bacterial isolates, we analyzed 25 carefully selected isolates of pathogenic Escherichia coli (E. coli) and additional Enterobacteriaceae members. Organisms were prepared according to clinical microbiological protocols and analyzed with minimal additional processing. Spectra were reproducible from preparation to preparation and comprised 40-100 peaks primarily representing intracellular proteins with masses up to 25 kDa. Spectra of 14 genetically diverse bacteremic isolates of E. coli were compared with isolates representing other genera within the Enterobacteriaceae family. Using a new spectrum comparison algorithm, E. coli isolates were closely related to each other and were readily distinguishable from other Enterobacteriaceae, including Salmonella and Shigella. Presently, the methodology permits the analysis of 40 unknown isolates per hour per instrument. These results suggest that MALDI-ToF MS offers a rapid and reliable approach for performing phyloproteomics i.e., identification of unknown bacterial isolates based on similarities within protein biomarker databases.  相似文献   

14.
The covalent nature of the human antithrombin III--thrombin bond.   总被引:5,自引:2,他引:3       下载免费PDF全文
1. Cleavage of the human antithrombin III--thrombin complex with [14C]methoxyamine hydrochloride results in inactive thrombin and 14C-labelled antithrombin III. 2. Discontinuous polyacrylamide-gel electrophoresis of the reduced dissociation fragments of the complex in the presence of sodium dodecyl sulphate reveals two antithrombin III bands that do not resolve during electrophoresis without reduction. The heavy band has the electrophoretic mobility of the native protein. The light band has an apparent mol.wt. that is approx. 4000 less than the molecular weight of native antithrombin III. 3. Treatment of the cleavage products of the complex with carboxypeptidase B yields 1 mumol of arginine, a new C-terminal amino acid, per mumol of thrombin dissociated. The results indicate that during formation of the antithrombin III--thrombin complex, the inhibitor is cleaved at an arginine--X bond; this arginine residue forms a carboxylic ester with the enzyme, while the excised polypeptide remains bound through a disulphide bridge(s).  相似文献   

15.
The effect of prothrombin fragment 2 on the inhibition of thrombin by antithrombin III has been studied. Fragment 2 was found to slow the rate of inhibition of thrombin by antithrombin III about 3-fold. The effect of prothrombin fragment 2 on antithrombin III inhibition was examined by comparing its action in the presence of either thrombin or meizothrombin (des fragment 1). The second order rate constants for antithrombin III inhibition of thrombin with saturating fragment 2 and antithrombin III inhibition of meizothrombin (des fragment 1) were the same. Prothrombin fragment 2 had no effect on either antithrombin III inhibition of meizothrombin (des fragment 1) or Factor Xa. The effect of the fragment on the reaction mechanism of thrombin inhibition was evaluated to see if the fragment altered binding of antithrombin III to thrombin or inhibited the formation of the covalent complex. The fragment was found to have no inhibitory effect on the rate of covalent complex formation, indicating that the protective effect of the fragment is by inhibiting binding of antithrombin III to thrombin. These data suggest that prothrombin fragment 2 may be an important factor in controlling the localization of clot formation by regulating the interaction between thrombin and antithrombin III.  相似文献   

16.
Equilibrium gel permeation chromatography was employed to determine the ability of heparin to form complexes with thrombin and antithrombin III. In the eluate from a Sephacryl S-200 column, heparin caused a peak and then a trough in the fluorescence of 48 nM antithrombin III or 63 nM thrombin. The peak-heights with known amounts of heparin were used for standard curves to determine the extent of complex formation by test heparin preparations. Only heparin species with high-affinity for antithrombin III specifically formed a complex with antithrombin III under the conditions used. The ability to form a complex of heparin preparations with different anticoagulant activities for thrombin and antithrombin III could be determined satisfactorily. The heparin species with different affinities for antithrombin III did not coincide those with different affinities for thrombin. Of 4 preparations with one low-affinity and three high-affinity subfractions of heparin for antithrombin III, the species with the lowest affinity for antithrombin III had the highest affinity for thrombin. All of these observations showed that the method could be used to determine the ability to form a complex of test heparin preparations.  相似文献   

17.
Integrating surface plasmon resonance analysis with mass spectrometry allows detection and characterization of molecular interactions to be complemented with identification of interaction partners. We have developed a procedure for Biacore 3000 that automatically performs all steps from ligand fishing and recovery to sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry including on-target digestion. In the model system used in this study a signal transduction protein, calmodulin, was selectively captured from brain extract by one of its interaction partners immobilized on a sensor chip. The bound material was eluted, deposited directly onto a MALDI target, and analyzed by mass spectrometry both as an intact protein and after on-target tryptic digestion. The procedure with direct deposition of recovered material on the MALDI target reduces sample losses and, in combination with automatic sample processing, increases the throughput of surface plasmon resonance mass spectrometry analysis.  相似文献   

18.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

19.
Here a simple, reproducible, and versatile method is described for manufacturing protein and ligand chips. The photo-induced copolymerization of acrylamide-based gel monomers with different probes (oligonucleotides, DNA, proteins, and low-molecular ligands) modified by the introduction of methacrylic groups takes place in drops on a glass or silicone surface. All probes are uniformly and chemically fixed with a high yield within the whole volume of hydrogel semispherical chip elements that are chemically attached to the surface. Purified enzymes, antibodies, antigens, and other proteins, as well as complex protein mixtures such as cell lysates, were immobilized on a chip. Avidin- and oligohistidine-tagged proteins can be immobilized within biotin- and Ni-nitrilotriacetic acid-modified gel elements. Most gel-immobilized proteins maintain their biological properties for at least six months. Fluorescence and chemiluminescence microscopy were used as efficient methods for the quantitative analysis of the microchips. Direct on-chip matrix-assisted laser desorption ionization-time of flight mass spectrometry was used for the qualitative identification of interacting molecules and to analyze tryptic peptides after the digestion of proteins in individual gel elements. We also demonstrate other useful properties of protein microchips and their application to proteomics and diagnostics.  相似文献   

20.
The interaction of thrombin, plasmin or their antithrombin III complexes with isolated mouse hepatocytes was studied. Plasmin bound to hepatocytes in a concentration-dependent manner with an apparent Kd of 6.4.10(-8) M, attaining equilibrium within 10 min, and the interaction was inhibited by 6-amino-n-hexanoic acid. Plasmin treated with diisopropylfluorophosphate (DFP) bound to the cells in similar way as the untreated form of the enzyme. Thrombin bound also to hepatocytes, in a concentration-dependent manner, with a Kd of 5.4.10(-8) M reaching a steady state after 180 min. Thrombin inactivated with DFP, however, was inhibited in its binding to these cells. These data suggest that, whereas the kringle domains of plasmin are responsible for the enzyme-cell interaction, the active center of thrombin may be involved in the binding of this enzyme to hepatocytes. Plasmin-antithrombin III and thrombin-antithrombin III complexes were also associated with hepatocytes in a time-dependent manner, reaching a plateau after 180 min, and the two complexes competed in the interaction. While the interaction of active proteinases plasmin or thrombin with hepatocytes did not result in their internalization, the antithrombin III complexes were taken up by the cells, and thrombin-antithrombin III complex was degraded. These results indicate that hepatocytes may participate in the elimination of proteinase-antithrombin III complexes from the plasma, while the association of plasmin and thrombin with hepatocytes could imply distinct biological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号