首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents data on the genetic variability of the northern red-backed vole and the bank vole that live sympatrically in West Siberia. The two species of voles have comparable, relatively high indices of genetic variability of inter simple sequences repeats DNA. The proportion of polymorphic DNA markers is 95–98%, and the Nei’s genetic diversity index is 0.33–0.35. A total of 47–58% of allozyme loci in the voles are polymorphic, and the average heterozygosity per locus is 0.058 in the northern red-backed vole and 0.054 in the bank vole. Interpopulation differentiation is less pronounced in the red-backed vole (F ST 0.293) compared to the bank vole (F ST 0.475). Individuals of the hybrid line of the bank vole with the mitochondrial haplotype of the red-backed vole have been found by PCR typing of cytochrome b gene fragment of mtDNA. The distribution boundary of the hybrid line of bank voles goes farther to the northeast than was shown in earlier works. The proportion of hybrid specimens range from 2 to 34%. The indices of genetic variability in the hybrid line of the bank vole are lower than those of the parental species.  相似文献   

2.
In the present study, the genetic polymorphism of the Chionomys genus was examined based on the sequencing of the mitochondrial cytb gene and two nuclear exons, including GHR exon 10 and BRCA1 exon 11. The distinct subdivision of the genus of snow voles into five lineages, including Ch. nivalis, Ch. gud, Ch. roberti, and Ch. aff. nivalis from Turkey, as well as Ch. aff. gud from Turkey, was demonstrated. The branching order in the trees constructed based on the data for different genes was ambiguous, which was probably the consequence of recent and rapid radiation of the major lineages from a common ancestor. However, the data of the mitochondrial and nuclear gene analyses definitely indicated that the genetic and taxonomic diversity of the Chionomys genus was higher than it was expected before. The genetic divergence of some populations was so deep that they probably deserved the statuses of independent species. Despite that the range of the European snow vole Ch. nivalis is larger and more fragmented than the Gudaur vole Ch. gud, the latter species with its relatively small range, which is limited to the Caucasian and Pontic Mountains, was characterized by a similarly expressed phylogenetic structure. At the same time, Robert’s vole Ch. roberti was less structured genetically than the first two species. The data obtained supported the Near Eastern, rather than the European origin of the Chionomys genus.  相似文献   

3.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.  相似文献   

4.
Human Alveolar Echinococcosis (HAE) is a potentially fatal parasitic disease caused by Echinococcus multilocularis, a cestode characterized by a sylvatic life-cycle involving several species of rodents and lagomorphs as intermediate hosts and canids as definitive hosts. Despite the wide distribution of the parasite in North America, the number of competent intermediate host species identified to date is still relatively small, and mainly includes the northern vole (Microtus oeconomus), brown lemming (Lemmus sibiricus), northern red-backed vole (Myodes rutilus), deer mouse (Peromyscus maniculatus) and meadow vole (Microtus pennsylvanicus).By monitoring the infections in rodents in the city of Calgary (Alberta, Canada), we have detected a case of severe alveolar echinococcosis in a southern red-backed vole (Myodes gapperi), a species never reported before as an intermediate host for this parasite. Observation of protoscolices in the intra-abdominal multilocular cysts indicates that M. gapperi could act as a competent intermediate host for the transmission of E. multilocularis.Since M. gapperi can be found in close proximity to, and within metropolitan areas, this species could play a role in the establishment and maintenance of the sylvatic life-cycle of E. multilocularis in urban landscapes, where the potential for zoonotic transmission is higher. The new intermediate host reported needs to be taken into account in future surveys and transmission models for this parasite.  相似文献   

5.
The phenomenon of interspecific hybridization accompanied by transfer of the mitochondrial genome from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (Cl. glareolus) in northeastern Europe is well known already for 25 years. However, the possibility of recombination between homologous segments of maternal and paternal mtDNAs of the voles during fertilization was not previously studied. Analysis of data on variability of nucleotide sequences of the mitochondrial gene for cytochrome b in populations of red-backed and bank voles in the area of their sympatry has shown that as a result of interspecific hybridization, the mitochondrial gene pool of bank voles contains not only mtDNA haplotypes of red-backed vole females, but also mtDNA haplotypes of bank voles bearing short nucleotide tracts of red-backed vole mtDNA. This finding supports the hypothesis that an incomplete elimination of red-backed vole paternal mtDNA during the interspecific hybridization between bank vole females and red-backed vole males leads to the gene conversion of bank vole maternal mtDNA tracts by homologous ones of mtDNA of red-backed vole males.  相似文献   

6.
Interaction between mitochondrial and nuclear genomes is expected to affect energetic phenotypes of traits linked to mitochondrial physiology, further influencing the fitness. A rodent, the bank vole (Myodes glareolus), has a population structure completely or partially introgressed with mitochondria from its relative, the red vole (M. r utilus). Females that carried either bank vole mitochondria or mitochondria from the introgressed species were repeatedly mated with males of both mtDNA types. We found that in males, but not in females, morpho-physiological phenotypes are affected by sire type, causing decreases in body mass (BM) and basal metabolic rate (BMR; including BM corrected, rBMR) in individuals sired by fathers carrying introgressed mitochondria. Higher effect sizes for the proportion of additive genetic variation (and 5.6, 1.9 and 3.6 times higher narrow sense heritability for BM, BMR and rBMR, respectively), and lower for proportion of environmental variation were detected in progeny of non-introgressed males. Our data indicate that co-adapted and possibly co-introgressed nuclear genes related to energetic physiology have an important role in adaptation to the northern conditions in bank voles, and that sex linked nuclear genes are a potential source for variation in basal metabolic rate.  相似文献   

7.
The nitrogen-fixating and cellobiohydrolase activity, the nitrogen (N) and carbon (C) contents, and the number of microorganisms in the prestomach, cecum, and colon of two vole species were studied: the southern vole (Microtus rossiaemeridionalis) and the bank vole (Clethrionomys glareolus), which is characterized by a mixed type of diet. The nitrogen-fixating activity in the cecum was found to be the highest in the voles compared with the mammals studied earlier. The seasonal dynamics of both nitrogenase and cellobiohydrolase activities was registered in the southern vole. The structure of the microbial complex in the southern vole is more varied and includes microorganisms associated with plant substrates.  相似文献   

8.
The phylogenetic position of the Olkhon mountain vole (Alticola olchonensis Litvinov, 1960) was studied using the sequences of four nuclear (BRCA, GHR, LCAT, and IRBP) and one mitochondrial (cyt. b) gene. Until now multiple studies of the systematic position of this vole had been based exclusively on morphological data, while the major taxonomic references contain contradictory information regarding both the subgeneric and species status of this animal. It was established that the molecular data and morphology data allow us to concern the Lake Baikal vole unambiguously as a part of the nominative subgenus Alticola instead of Aschizomys.  相似文献   

9.
The authors present new data on spatial-temporal distribution of the northern red-backed vole (Myodes rutilus Pallas) and the large-toothed redback vole (M. rufocanus Sundervall) for the main habitat types in the Khanka Plain, Primorskii Krai. Data on seasonal and long-term abundance for 2003-2005 are reported. The study was stimulated by contradictory data on the distribution of the Myodes voles in the Khanka Plain.  相似文献   

10.
Abstract: How small mammals are affected by habitat changes caused by forest insect epidemics is largely unknown. Our objective was to determine the influence of spruce beetle (Dendroctonus rufipennis) epidemics on the dynamics of northern red-backed vole (Clethrionomys rutilus) populations approximately 10 years post-infestation. We conducted a mark-recapture study on northern red-backed voles for 2 field seasons in the Copper River Basin, Alaska, USA, where recent beetle infestations were widespread. Using the robust sampling design, we produced estimates of vole abundance, survival, and recruitment in 3 locations that varied in their degree of beetle-induced spruce mortality. Vole abundance inversely related to the level of spruce mortality. Vole recruitment showed a larger contribution from both immigration and in situ reproduction in the low infestation site than in the medium and heavy infestation sites. No differences in vole survival were detectable across the 3 locations with varied beetle-induced spruce mortality levels. Measured vole food resources and protective vegetative cover did not vary greatly across infestation levels. Abundance and recruitment parameters indicate a negative change induced by spruce beetle infestations. However, the effect of beetles was not large enough to cause the variation in vole survival. Spruce mortality levels may need to be over 50% before greatly influencing the habitat and the demographics of northern red-backed voles.  相似文献   

11.
Stenotopic specialization to a fragmented habitat promotes the evolution of genetic structure. It is not yet clear whether small-scale population structure generally translates into large-scale intraspecific divergence. In the present survey of mitochondrial genetic structure in the Lake Tanganyika endemic Altolamprologus (Teleostei, Cichlidae), a rock-dwelling cichlid genus comprising A. compressiceps and A. calvus, habitat-induced population fragmentation contrasts with weak phylogeographic structure and recent divergence among genetic clades. Low rates of dispersal, perhaps along gastropod shell beds that connect patches of rocky habitat, and periodic secondary contact during lake level fluctuations are apparently sufficient to maintain genetic connectivity within each of the two Altolamprologus species. The picture of genetic cohesion was interrupted by a single highly divergent haplotype clade in A. compressiceps restricted to the northern part of the lake. Comparisons between mitochondrial and nuclear phylogenetic reconstructions suggested that the divergent mitochondrial clade originated from ancient interspecific introgression. Finally, ‘isolation-with-migration’ models indicated that divergence between the two Altolamprologus species was recent (67–142 KYA) and proceeded with little if any gene flow. As in other rock-dwelling cichlids, recent population expansions were inferred in both Altolamprologus species, which may be connected with drastic lake level fluctuations.  相似文献   

12.
Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a ‘Celtic fringe’. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM.  相似文献   

13.
The California vole, Microtus californicus, restricted to habitat patches where water is available nearly year‐round, is a remnant of the mesic history of the southern Great Basin and Mojave deserts of eastern California. The history of voles in this region is a model for species‐edge population dynamics through periods of climatic change. We sampled voles from the eastern deserts of California and examined variation in the mitochondrial cytb gene, three nuclear intron regions, and across 12 nuclear microsatellite markers. Samples are allocated to two mitochondrial clades: one associated with southern California and the other with central and northern California. The limited mtDNA structure largely recovers the geographical distribution, replicated by both nuclear introns and microsatellites. The most remote population, Microtus californicus scirpensis at Tecopa near Death Valley, was the most distinct. This population shares microsatellite alleles with both mtDNA clades, and both its northern clade nuclear introns and southern clade mtDNA sequences support a hybrid origin for this endangered population. The overall patterns support two major invasions into the desert through an ancient system of riparian corridors along streams and lake margins during the latter part of the Pleistocene followed by local in situ divergence subsequent to late Pleistocene and Holocene drying events. Changes in current water resource use could easily remove California voles from parts of the desert landscape.  相似文献   

14.
Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.  相似文献   

15.
Differences in the mechanisms regulating reproduction between the northern red-backed vole (Clethrionomys rutilus) and large-toothed red-backed vole (Cl. rufocanus) have been revealed under vivarium conditions. In Cl. rufocanus, the date of birth is the most important ??signal?? factor for sexual maturation of male young of the year, while the effect of population density is significant only for males of the spring generation. Males of the summer generation fail to mature in the same year and are completely excluded from reproduction, which may be accounted for by a rise in the level of corticosterone (measured in fecal samples). Such a mechanism for regulating the numbers of reproductive individuals is absent in Cl. rutilus voles. Throughout the breeding season, males of this species respond to high population density by a decrease in the rate of sexual maturation. No definite relationship between sexual maturation and the level of adrenocortical activity has been revealed in Cl. rutilus.  相似文献   

16.
We estimate habitat loss and fragmentation in a hoverfly, Aneriophora aureorufa, used as a representative forest specialist species. This species is a pollinator specialist of two native trees, forming a triad endemic to the South American Temperate Rainforest (SATR). We combine species distribution models with species-specific requirements to estimate the habitat range of A. aureorufa over two non-overlapping time periods (before human settlement to 2000, and from 2000 to 2014). We analyzed the predicted distribution range of A. aureorufa in Chile, quantifying habitat loss in both periods and fragmentation in the latter. In addition, we evaluated the representativeness of the Chilean protected areas system in relation to the current habitat of the species. We found that the total habitat of A. aureorufa decreased by 68.3% compared to historic pre-settlement levels; in the period 2000–2014 the loss was 4.9%. The northern zone was the most affected by habitat loss and fragmentation, with an estimated total loss of 89.9% from the historic period to 2014, with the loss of 238.2 km2 per year between 2000 and 2014. Eighteen percent of the habitat of A. aureorufa occurs within protected areas. We found an overrepresentation in the southern zone (24.79%) and an underrepresentation in the northern zone (3.44%). We propose that forest specialist species of the northern zone of the SATR could be threatened due to the high pressure of habitat loss and the underrepresentation of the Chilean protected areas systems.  相似文献   

17.
Grey voles (subgenus Microtus) represent a complex of at least seven closely related and partly cryptic species. The range of these species extends from the Atlantic to the Altai Mountains, but most of them occur east of the Black Sea. Using ancient DNA analyses of the Late Pleistocene specimens, we identified a new mtDNA lineage of grey voles in Europe. Phylogenetic analysis of mitochondrial DNA cytochrome b sequences from 23 voles from three caves, namely, Emine–Bair–Khosar (Crimea, Ukraine), Cave 16 (Bulgaria), and Bacho Kiro (Bulgaria), showed that 14 specimens form a previously unrecognized lineage, sister to the Tien Shan vole. The average sequence divergence of this lineage and the extant Tien Shan vole was 4.8%, which is similar to the divergence of grey vole forms, which are considered distinct species or being on the verge of speciation; M. arvalis and M. obscurus or M. mystacinus and M. rossiaemeridionalis. We estimated the time to the most recent common ancestor of the grey voles to be 0.66 Ma, which is over twice the recent estimates, while the divergence of the extant Tien Shan vole and the new lineage to be 0.29 Ma. Our discovery suggests that grey voles may have been more diversified in the past and that their ranges may have differed substantially from current ones. It also underlines the utility of ancient DNA to decipher the evolutionary history of voles.  相似文献   

18.
The results of interspecific crosses of the social vole Microtus socialis with the Altai vole M. obscurus, the East European vole M. rossiaemeridionalis, and the Transcaspian vole M. transcaspicus are presented. The role of the sperm head structure in the reproductive isolation of this species was studied. Hybrids were obtained in five of the six crossing combinations. It is established that significant differences in the sperm head shape in the social vole and in arvalis group species do not prevent fertilization. The sterility of hybrids indicates the existence of postcopulative mechanisms of reproductive isolation.  相似文献   

19.
The areal extent and configuration of thickets of willow shrubs are currently changing in the Arctic both as an effect of global warming and changed browsing pressure of reindeer. These changes have been predicted to impact the distribution and abundance of wildlife species relying on willow thickets as habitat. We assessed the relation between variables quantifying willow thicket configuration and population dynamics of tundra voles (Microtus oeconomus) in three riparian regions in Finnmark, northern Norway, which were subject to intense browsing by semi-domesticated reindeer. The tundra vole, which exhibits 5-year population cycles in Finnmark, is the dominant small rodent species in riparian landscape elements in southern arctic tundra. In the course of a 4-year trapping study, tundra vole populations went through the cyclic phases of increase, peak and crash, however, with distinct differences between the three regions in the population dynamics. Within regions, the occupancy pattern during the increase phase was positively related to willow thicket configuration (in particular edge density and willow height) only in the region attaining the highest abundance and occupancy. However, local abundance was not clearly related to habitat features within any regions. The lack of consistency in the response of tundra vole populations to willow thicket configuration, as well as the positive relation between the degree of thicket shredding and tundra vole habitat occupancy in one of the regions, indicates that tundra voles will not be much affected by climate or browsing induced changes in the shrubbiness of the tundra in the future.  相似文献   

20.
As a result of specific adaptations and habitat preferences strongly rheophilic fish species may show high levels of endemism. Many temperate rheophilic fish species were subjected to a series of range contractions during the Pleistocene, and then successfully expanded during the Holocene, colonising previously abandoned areas. The Carpathian barbel (Barbus carpathicus Kotlík, Tsigenopoulos, Ráb et Berrebi 2002) occurs in the montane streams in three basins of the main Central European rivers in the northern part of the Carpathian range. We used genetic variation within 3 mitochondrial and 9 microsatellite loci to determine a pattern of postglacial expansion in B. carpathicus. We found that overall genetic variation within the species is relatively low. Estimate of time to the most recent common ancestor (tMRCA) of mitochondrial sequences falls within the Holocene. The highest levels of genetic variation found in upper reaches of the Tisa river in the Danube basin suggest that glacial refugia were located in the south-eastern part of the species range. Our data suggest that the species crossed different watersheds at least six times as three genetically distinct groups (probably established in different expansion episodes) were found in northern part of the species range. Clines of genetic variation were observed in both the Danube and Vistula basins, which probably resulted from subsequent bottlenecks while colonizing successive habitats (south eastern populations) or due to the admixture of genetically diverse individuals to a previously uniform population (Vistula basin). Therefore, B. carpathicus underwent both demographic breakdowns and expansions during the Holocene, showing its distribution and demography are sensitive to environmental change. Our findings are important in the light of the current human-induced habitats alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号