首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of vitamin D receptor-retinoid X receptor (VDR-RXR) heterodimers to induce a DNA bend upon binding to various vitamin D response elements (VDRE) has been investigated by circular permutation and phasing analysis. Recombinant rat VDR expressed in the baculovirus system and purified recombinant human RXR beta have been used. The VDREs were from 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) enhanced genes (rat osteocalcin, rOC; mouse osteopontin, mOP, and rat 1,25-dihydroxyvitamin D3-24-hydroxylase, r24-OHase), and a 1,25-(OH)2D3 repressed gene (human parathyroid hormone, hPTH). As shown by circular permutation analysis, VDR-RXR induced a distortion in DNA fragments containing various VDREs. Calculated distortion angles were similar in magnitude (57 degrees, 56 degrees, 61 degrees, and 59 degrees, respectively for rOC, mOP, r24-Ohase, and hPTH). The distortions took place with or without a 1,25-(OH)2D3 ligand. The centers of the apparent bend were found in the vicinity of the midpoint of all VDREs, except for rOC VDRE which was found 4 bp upstream. Phasing analysis was performed with DNA fragments containing mOP VDRE and revealed that VDR-RXR heterodimers induced a directed bend of 26 degrees, not influenced by the presence of hormone. In this study we report that similar to other members of the steroid and thyroid nuclear receptor superfamily, VDR-RXR heterodimers induce DNA bending.  相似文献   

2.
3.
Yamada S  Yamamoto K  Masuno H  Choi M 《Steroids》2001,66(3-5):177-187
On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A > G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G > EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand.  相似文献   

4.
5.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

6.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

7.
8.
9.
10.
Cardiovascular homeostasis and blood pressure regulation are reliant, in part, on interactions between natriuretic peptide (NP) hormones and natriuretic peptide receptors (NPR). The C-type NPR (NPR-C) is responsible for clearance of NP hormones from the circulation, and displays a cross-reactivity for all NP hormones (ANP, BNP, and CNP), in contrast to other NPRs, which are more restricted in their specificity. In order to elucidate the structural determinants for the binding specificity and cross-reactivity of NPR-C with NP hormones, we have determined the crystal structures of the complexes of NPR-C with atrial natriuretic peptide (ANP), and with brain natriuretic peptide (BNP). A structural comparison of these complexes, with the previous structure of the NPR-C/CNP complex, reveals that NPR-C uses a conformationally inflexible surface to bind three different, highly flexible, NP ligands. The complex structures support a mechanism of rigid promiscuity rather than conformational plasticity by the receptor. While ANP and BNP appear to adopt similar receptor-bound conformations, the CNP structure diverges, yet shares sets of common receptor contacts with the other ligands. The degenerate versus selective hormone recognition properties of different NPRs appears to derive largely from two cavities on the receptor surfaces, pocket I and pocket II, that serve as anchoring sites for hormone side-chains and modulate receptor selectivity.  相似文献   

11.
The biochemical properties of a chick pancreatic calcium binding protein (CaBP) and its response to vitamin D status and dietary calcium and phosphorus levels were studied and compared with the known vitamin D-dependent CaBPs present in the chick intestine and kidney. Pancreatic CaBP is homologous to the intestinal CaBP on the basis of immunological cross-reactivity, molecular size (28,200 Da), and charge properties (chromatographic mobility on DEAE-Sephadex in the presence of either EDTA or Ca2+). Pancreatic levels of CaBP respond to changes in vitamin D status and dietary Ca and P level in a fashion similar to the intestinal CaBP. Thus, in the absence of dietary vitamin D, both pancreatic and intestinal CaBPs were essentially undetectable, while in the presence of dietary vitamin D, a low dietary P (0.05%) elevated the pancreatic and intestinal CaBP 1.5X and 1.6X, respectively, compared to the CaBP levels present with normal dietary Ca and P (1.0%, 1.0%). The tissue levels of pancreatic CaBP (6-10 ng/mg protein) are about 0.2% of the intestine (5000 ng/mg protein) and 1% of the kidney CaBP (700 ng/mg protein). However, when corrections are made for the CaBP distribution in the tissues and expressed as CaBP concentration per CaBP-containing cells, the pancreatic CaBP level was 30% of the intestine and 10% of the kidney. Collectively, these results suggest that the chick pancreatic vitamin D-dependent CaBP is a homologous protein to the intestinal CaBP, both with regards to its relative cellular concentration as well as in its response to changing dietary levels of Ca and P.  相似文献   

12.
Structural determinants of T-cell receptor bias in immunity   总被引:1,自引:0,他引:1  
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.  相似文献   

13.
Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.  相似文献   

14.
Structural determinants of a glucocorticoid receptor recognition element   总被引:9,自引:0,他引:9  
Analysis of the relative inducibility of an extensive series of mutant glucocorticoid response elements (GREs) defines features critical to the constitution of an active GRE. Assuming that function as a GRE reflects binding of glucocorticoid receptor, our activity data are consistent with the recognition of the GRE as two hexamer half-sites, each half-site recognized by a single subunit of a receptor dimer, probably in a cooperative fashion. Integrity of both half-sites is necessary for an active element, and spacing of the half-sites is critical. The identity of 1 basepair within the hexamer half-site is unconstrained; the receptor probably makes no base-specific contacts at this position. In contrast, at other positions within the half-site, limited substitutions (if any) can be tolerated. These results along with data from certain insertion mutations suggest that the receptor recognizes each hexamer half-site as two separable subelements. A further implication is that the DNA-binding domain of the glucocorticoid receptor is composed of distinct subdomains, which interact with the subelements of the recognition sequence.  相似文献   

15.
We have previously reported the cloning and sequencing of both the chicken and human vitamin D3 receptor cDNAs. A comparison of their deduced amino acid sequence with that of the other classic steroid hormone receptors and the receptor for thyroid hormone indicates that there are two regions of conservation between these molecules. The first is a 70 amino acid, cysteine-rich sequence (C1), the second region (C2) is a 62 amino acid region located towards the carboxyl terminus of the proteins. In other systems the former has been identified as a region responsible for DNA binding activity, whereas the latter represents the NH2-terminal boundary of the hormone binding domain. We present here evidence utilizing eucaryotic expression of cDNA encoding the hVDR C1 domain, followed by a DNA cellulose chromatography assay, which confirms that the DNA binding activity resides in this region of the receptor for vitamin D3. Additionally, the vitamin D3 receptor contains a 60 amino acid portion at its carboxyl terminus (C3) which exhibits homology with the receptor for thyroid hormone. Conservation in this region of the molecule is found only between homologous or closely related receptors. This indicates a relationship between the vitamin D3 receptor and the receptor for thyroid hormone and may suggest that they evolved from a single primordial gene.  相似文献   

16.
A run for a membrane vitamin D receptor.   总被引:9,自引:0,他引:9  
  相似文献   

17.
18.
Non-secosteroidal VDR ligands without any assymmetric carbon were designed and synthesized based on the structure of the previously reported non-secosteroidal VDR agonist LG190178. The VDR-agonistic activity of all synthesized compounds was evaluated, and 7b emerged as a potent agonist activity with an EC50 value of 9.26?nM. Moreover, a docking simulation analysis was also performed to determine the binding mode of 7b with VDR-LBD.  相似文献   

19.
20.
Structure–activity relationship studies on 1α,25-dihydroxyvitamin D3-26,23-lactams (DLAMs), antagonists of vitamin D, were conducted, focusing on the substituents of the phenyl group. One of the derivatives (23S,25S)-DLAM-1P-3,5(OEt)2, showed potent antagonistic activity with an IC50 of 90 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号