首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila melanogaster is able to detect a small visual object hidden in a background of identical texture, as long as there is relative motion between their retinal images. The properties of figure-ground discrimination in the walking fly are studied under experimental conditions where the positions of figure and ground oscillate sinusoidally with similar frequency and similar amplitude but with different phase. The following points have been established. (a) The average turning reaction of the stationarily walkingDrosophila depends on phase; contrary to results obtained with the flyingMusca (Reichardt and Poggio, 1979), antiphasic oscillation of figure and ground does not suppress the attrativeness of the figure. (b) A translatory response has been found which also depends on the phase difference of the oscillatory movements of figure and ground. (c) The time course of the responses and its intra- and inter-individual variability do not seem to fit into a rigid model of figure-ground discrimination.  相似文献   

2.
Biologically plausible electronic neural network setup for real time processing motion image informa-tion was built. Using this setup the first part of the model was examined and real time discrimination of moving object image was realized from complex background in high resolution. Afterimages may play an important role in filtering moving object image and the aperture problem should be separated into two parts: the first part, i.e. the incomplete filtered moving object image, can be better resolved by parallel integration of multi-channel visual information, howev-er, the second part, i.e. the inaccurate measurement results for movement direction, may only get certain compensa-tion by visual integration.  相似文献   

3.
A new class of large-field tangential neurones (Figure Detection (FD-) cells) has been found and analysed in the lobula plate, the posterior part of the third visual ganglion, of the fly by combined extra-and intracellular recording as well as Lucifer Yellow injection. The FD-cells are likely to play a prominent role in figure-ground discrimination. Together with the Horizontal Cells, the output elements of the neuronal network underlying the optomotor course control reaction, they seem to be appropriate to account for the characteristic yaw torque response to relative motion. The FD-cells might thus compensate for the deficits of the Horizontal Cells with respect to figureground discrimination (see Egelhaaf, 1985a).The FD-cells are directionally selective for either front-to-back (FD 1, FD 4) or back-to-front motion (FD 2, FD 3). Their excitatory receptive fields cover part of (FD 1, FD 2, FD 3) or the entire horizontal extent (FD 4) of the visual field of one eye. Their most important common property in the context of figureground discrimination is that they are more sensitive to relatively small objects than to spatially extended patterns. Their response to a small figure is much reduced by simultaneous large-field motion in front of the ipsi-as well as the contralateral eye. This large-field inhibition is either directionally selective or bidirectional, depending on the FD-cell under consideration. The main dendritic arborization of all FD-cells resides in the lobula plate. Their axonal projections lie in either the ipsi-or contralateral posterior optic foci and, thus, in the same area as the terminals of the Horizontal Cells. The FD-cells are, therefore, appropriate candidates for output elements of the optic lobes involved in figure-ground discrimination.  相似文献   

4.
It has been concluded in the preceding papers (Egelhaaf, 1985a, b) that two functional classes of output elements of the visual ganglia might be involved in figure-ground discrimination by relative motion in the fly: The Horizontal Cells which respond best to the motion of large textured patterns and the FD-cells which are most sensitive to small moving objects. In this paper it is studied by computer simulations (1) in what way the input circuitry of the FD-cells might be organized and (2) the role the FD-cells play in figure-ground discrimination. The characteristic functional properties of the FD-cells can be explained by various alternative model networks. In all models the main input to the FD-cells is formed by two retinotopic arrays of small-field elementary movement detectors, responding to either front-to-back or back-to-front motion. According to their preferred direction of motion the FD-cells are excited by one of these movement detector classes and inhibited by the other. The synaptic transmission between the movement detectors and the FD-cells is assumed to be non-linear. It is a common property of all these model circuits that the inhibition of the FD-cells induced by large-field motion is mediated by pool cells which cover altogether the entire horizontal extent of the visual field of both eyes. These pool cells affect the response of the FD-cells either by pre- or postsynaptic shunting inhibition. Depending on the FD-cell under consideration, the pool cells are directionally selective for motion or sensitive to motion in either horizontal direction. The role the FD-cells and the Horizontal Cells are likely to play in figure-ground discrimination can be demonstrated by computer simulations of a composite neuronal model consisting of the model circuits for these cell types. According to their divergent spatial integration properties they perform different tasks in figure-ground discrimination: Whereas the Horizontal Cells mainly mediate information on wide-field motion, the FD-cells are selectively tuned to efficient detection of relatively small targets. Both cell classes together appear to be sufficient to account for figure-ground discrimination as it has been shown by analysis at the behavioural level.  相似文献   

5.
A fly can discriminate an object (figure) from its background on the basis of motion information alone. This information processing task has been analysed, so far, mainly in behavioural studies but also in electrophysiological experiments (Reichardt et al., 1983). The present study represents a further attempt to bridge the gap between the behavioural and the neuronal level. It is based on behavioural and electrophysiological experiments as well as on computer simulations. The characteristic properties of figureground discrimination behaviour impose specific constraints on the spatial integration properties of the output cells of the underlying neuronal network, the heterolateral interactions in their input circuitry, as well as on the range of variability of their response. These constraints are derived partly from previous behavioural studies (Reichardt et al., 1983), partly, however, from behavioural response characteristics which have not been addressed explicitly so far. They are interpreted in terms of one of the alternative model circuits shown by Reichardt et al. (1983) to be sufficient to account for figure-ground discrimination. It will be demonstrated, however, that this can be done equally well by means of a further alternative model circuit. These constraints are used in the electrophysiological analysis for establishing visual interneurones as output elements of the neuronal network underlying figure-ground discrimination.In the behavioural experiments on figure-ground discrimination as well as on the optomotor course control the yaw torque generated by the tethered flying fly under visual stimulation was used as a measure for the strength and time course of the reaction. Therefore, it has initially been proposed that the three Horizontal Cells, which are regarded as the output elements of the neuronal network underlying the optomotor reaction (e.g. Hausen, 1981), might also control yaw torque generation in figure-ground discrimination (Reichardt et al., 1983). New behavioural data show, however, that the Horizontal Cells do not meet all the constraints imposed on the presumed output cells of the figure-ground discrimination network: (1) The Horizontal Cells are not sensitive enough to motion of small objects. (2) The heterolateral interactions within their input circuitry are not in accordance with the behavioural data (see also Reichardt et al., 1983). (3) The variability found in the time course of certain components of the yaw torque response to relative motion of figure and ground cannot be explained by their response characteristics. Hence, the Horizontal Cells cannot account for figure-ground discrimination on their own and additional output cells of the optic lobes with different functional properties are required to accomplish this task.  相似文献   

6.
7.
8.
Making connections in the fly visual system   总被引:7,自引:0,他引:7  
Clandinin TR  Zipursky SL 《Neuron》2002,35(5):827-841
Understanding the molecular mechanisms that regulate formation of precise patterns of neuronal connections within the central nervous system remains a challenging problem in neurobiology. Genetic studies in worms and flies and molecular studies in vertebrate systems have led to an increasingly sophisticated understanding of how growth cones navigate toward their targets and form topographic maps. Considerably less is known about how growth cones recognize their cellular targets and form synapses with them. Here, we review connection formation in the fly visual system, the methodological approaches used to study it, and recent progress in uncovering the molecular basis of connection specificity.  相似文献   

9.
10.
The performance of the fly's movement detection system is analysed using the visually induced yaw torque generated during tethered flight as a behavioural indicator. In earlier studies usually large parts of the visual field were exposed to the movement stimuli; the fly's response, therefore, represented the spatially pooled output signals of a large number of local movement detectors. Here we examined the responses of individual movement detectors. The stimulus pattern was presented to the fly via small vertical slits, thus, nearly avoiding spatial integration of local movement information along the horizontal axis of the eye. The stimulus consisted of a vertically oriented sine-wave grating which was moved with a constant velocity either clockwise or counterclockwise. In agreement with the theory of movement detectors of the correlation type, the time-course of the detector signal is modulated with the spatial phase of the stimulus pattern. It can even assume negative values for some time during the response cycle and thus signal the wrong direction of motion. By spatially integrating the response over sufficiently large arrays of movement detectors these response modulations disappear. Finally, one obtains a signal of the movement detection system which is constant while the pattern moves in one direction and only changes its sign when the pattern reverses its direction of motion. Spatial integration thus represents a simple means to obtain a meaningful representations of motion information.  相似文献   

11.
Direction-selective cells in the fly visual system that have large receptive fields play a decisive role in encoding the time-dependent optic flow the animal encounters during locomotion. Recent experiments on the computations performed by these cells have highlighted the significance of dendritic integration and have addressed the role of spikes versus graded membrane potential changes in encoding optic flow information. It is becoming increasingly clear that the way optic flow is encoded in real time is constrained both by the computational needs of the animal in visually guided behaviour as well as by the specific properties of the underlying neuronal hardware.  相似文献   

12.
Dynamic aspects of the computation of visual motion information are analysed both theoretically and experimentally. The theoretical analysis is based on the type of movement detector which has been proposed to be realized in the visual system of insects (e.g. Hassenstein and Reichardt 1956; Reichardt 1957, 1961; Buchner 1984), but also of man (e.g. van Doorn and Koenderink 1982a, b; van Santen and Sperling 1984; Wilson 1985). The output of both a single movement detector and a one-dimensional array of detectors is formulated mathematically as a function of time. The resulting movement detector theory can be applied to a much wider range of moving stimuli than has been possible on the basis of previous formulations of the detector output. These stimuli comprise one-dimensional smooth detector input functions, i.e. functions which can be expanded into a time-dependent convergent Taylor series for any value of the spatial coordinate.The movement detector response can be represented by a power series. Each term of this series consists of one exclusively time-dependent component and of another component that depends, in addition, on the properties of the pattern. Even the exclusively time-dependent components of the movement detector output are not solely determined by the stimulus velocity. They rather depend in a non-linear way on the weighted sum of the instantaneous velocity and all its higher order time derivatives. The latter point represents another reason — not discussed so far in the literature — that movement detectors of the type analysed here do not represent pure velocity sensors.The significance of this movement detector theory is established for the visual system of the fly. This is done by comparing the spatially integrated movement detector response with the functional properties of the directionally-selective motion-sensitive. Horizontal Cells of the third visual ganglion of the fly's brain.These integrate local motion information over large parts of the visual field. The time course of the spatially integrated movement detector response is about proportional to the velocity of the stimulus pattern only as long as the pattern velocity and its time derivatives are sufficiently small. For large velocities and velocity changes of the stimulus pattern characteristic deviations of the response profiles from being proportional to pattern velocity are predicted on the basis of the detector theory developed here. These deviations are clearly reflected in the response of the wide-field Horizontal Cells, thus, providing very specific evidence that the movement detector theory developed here can be applied to motion detection in the fly. The characteristic dynamic features of the theoretically predicted and the experimentally determined cellular responses are exploited to estimate the time constant of the movement detector filter.  相似文献   

13.
We analysed the conformity of optic and retinal cones anatomy factors by the two-point test. Obtained by F. Campbell and R. W. Gubish, the point spread function has a width of about 1 arc min. Cones sizes are equal to 0.5 arc min in the fovea. Functional pixel consists of 3-5 cones under the point spread function. Such an organisation in very useful in decreasing the samping noise of receptors. We carried out psychophysical investigations to show a consensus among the optic, receptors', and neuronal levels. In experiments we studied changes of the two-point pattern perception in respect to the points separation, measured the orientation threshold of small size stimuli. Data were compared with optical point-spread function, the hexagonal mosaic of cones, and line spread function of spatial elements, which form spatial frequency channels at the cortical level.  相似文献   

14.
Processing of spatio-temporal information in the human visual system has been investigated thoroughly during the past decade, but is still far from being properly understood. Moreover, the theory of separation of information by means of sustained and transient channels already at the retinal level is not satisfactory, as experimental results indicate that these two types of channels span a continuum of temporal characteristics. It is however obvious, that the process of pattern recognition and velocity perception calls for their separation at some level of the hierarchy. In this communication, we extend our model of three-dimensional spatio-temporal frequency expansion in the visual system (Gafni and Zeevi, 1977) to show how velocity-information extraction channels, sensitive to direction and velocity exclusively, can be formed by simple summation of signals from well-defined sets of channels representing points in the frequency space. Correspondence of these channels to characteristics of the cortical neurons is discussed.  相似文献   

15.
16.
17.
In the theoretical part of the present work the input-output relation for a multi-input system is developed into a functional power series. This is formally equivalent to a decomposition of the system into a sum of all possible combinations of 1-, 2-, 3-... input subsystems. The average response of the system to a uniformly moving patern is known to be a Fourier series with respect to spatial frequency. The coefficients of the series are linear combinations of the weights by which different subsystems contribute to the total reaction. If a system can be shown to have essential nonlinearities of no higher than second order it is possible to calculate, from a Fourier analysis of the average movement response, the weight by which the nonlinear interaction between any two input elements contributes to the total reaction. This interaction is termed elementary movement detector. By the analysis presented here the arrangement of the elementary movement detectors may be determined for a two-dimensional array of input elements and the strength of their contributions to the total movement reaction may be calculated. Special experimental methods have been developed which allow one to apply this analysis to the visual system of the fruitfly Drosophila. The preliminary data presented show that the direction sensitive optomotor response of Drosophila can be attributed predominantly to the contributions from two elementary movement detectors which interconnect neighbouring visual elements. The detectors are oriented in the hexagonal array of the compound eye at +30° and at-30° with respect to the horizontal line of symmetry. A weak contribution from a detector between neighbouring elements along the horizontal line of symmetry is suggested by the present data. In the course of the analysis the contrast transfer properties of the compound eye are characterized.  相似文献   

18.
A generalized analysis of the generator potential responses of R1-6 cells of Calliphora provides remarkable information on the visual properties for the Diptera. This shows that, although these cells have two peak response sensivities for monochromatic stimuli at 350 and 480 nm under single color stimulus conditions, and when the background illumination is either zero or in the region of 450–560 nm, the sensitivity to ultraviolet light is practically eliminated for background illumination in either the ultraviolet or the region around 600 nm or when any simultaneous dynamic stimulus in the region of 480–550 nm is also applied. These results seem somewhat perplexing to an understanding of the behavioral vision properties. It also is not consistant with the concept that the ultraviolet response is initiated by a sensitizing pigment within these cells that transfers energy to the rhodopsin-metarhodopsin process. However, it strengthens other evidence that the limited condition of ultraviolet responses comes from interaction from R7,8 cells but does not play an important behavioral role in the visual system fed from cells R1-6. As discussed in this paper, any high level pattern recognition controlling behavioral response to ultraviolet stimuli comes from the R7,8 cell system.  相似文献   

19.
The principal component analysis of matrices composed of spike numbers generated by visual neurons of cats in response to motion of simple and complex stimuli revealed vector encoding. Responses of detectors of moving dot direction and detectors of oblique line orientation are encoded independently in V1 and V2 cortices by excitation of two cardinal neurons. Each pair of these neurons generates sine and cosine functions. Responses of detectors in the association cortex selective to specific orientation of moving stripes depend on the activity of four cardinal neurons which sum up the excitation incoming from the direction and orientation channels.  相似文献   

20.
Optomotor control of course and altitude in the fruitfly, Drosophila melanogaster, requires dense networks of elementary movement detectors (EMD's) which cover most if not all of the visual field. The predominant types of EMD's in these networks represent interactions between neighbouring visual elements along the three main directions of the hexagonal array in the compound eye. — Course control in the walking fly is achieved mainly by pairs of equivalent EMD's which occupy 2 o'clock and 4 o'clock positions with respect to the right eye (Buchner, 1976). Comparison of the turning response and the torque response in the present account confirms the particular properties of this network, and proves the presumed bidirectional sensitivity of its EMD's for the course control responses of legs and wings in the corresponding modes of locomotion. — Altitude control during flight is achieved by a less homogeneous network of EMD's which modifies lift and thrust simultaneously by the appropriate control of the wing beat amplitudes. The predominant types of EMD's in the lateral eye regions occupy 12 o'clock and 2 o'clock positions with respect to the right eye (Buchner et al., 1978). The present evaluation of the optomotor responses of thrust and wing beat confirms the preferred orientation of these EMD's and discloses a pecularity of their internal structure. The movement detectors of this network lack the bidirectional sensitivity of the EMD's in the course control system. At least the fronto-lateral network of the altitude control system seems to consist mainly of pairs of equivalent unidirectional EMD's. The detectors in 12 o'clock position increase wing beat in response to movement of the visual surroundings from inferior to superior. The opposite effect is produced by the detectors in 2 o'clock position which respond to movement from anterior-superior to posterior-inferior. These properties qualify unidirectional EMD's as the functional units of the optomotor control system in the fruitfly. Pairs of unidirectional antagonists would be sufficient to establish the bidirectional sensitivity found in the movement detectors of the course control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号