首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
利用年轮生态学方法和生物量经验方程,在宁夏六盘山研究了华山松天然林及华北落叶松和油松人工林等3种针叶林的年初级净生产力(NPP)及其与气象因子间的关系。研究表明:3种针叶林生物量的年际变化均符合逻辑斯蒂方程,林分的现存生物量(t/hm2)为华北落叶松林最大(141.96),华山松林(130.99)次之,油松林最小(123.29)。3种针叶林NPP存在显著的年际差异和种间差异,林分的NPP(t.hm-.2a-1)为华北落叶松林(6.72)>油松林(5.76)>华山松林(2.66);NPP年际变化在华山松林呈现"快速增加-缓慢增加-缓慢减小"的趋势,而华北落叶松林和油松林为快速上升的趋势。3种针叶林的NPP随年降水量的变化行为不同,华山松林极轻微地增大,华北落叶松林和油松林均是先增加后降低;然而在极端干旱年份或极端湿润年份,3种针叶林的NPP都趋向于相同的较低值,其原因可能分别是水分胁迫和低温胁迫。气象因子对林分NPP的影响具明显的"滞后效应"和种间差异。华山松林NPP与上年11月和当年9、11月的降水量显著负相关;油松林NPP与上年9月及当年4月的降水量显著相关;上年和当年9月的降水量均与华北落叶松林NPP显著正相关。上年6月的温度和当年3与6月的月均温及月均最高温能显著影响3种针叶林的NPP,但存在种间差异,其中华山松林NPP与当年与上年生长季各月的温度均呈不同程度的负相关,而油松林和华北落叶松林则多呈不同程度的正相关。  相似文献   

2.
叶辉  王军邦  黄玫  齐述华 《植物生态学报》2012,36(12):1237-1247
植被降水利用效率(precipitation use efficiency, PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production, NPP), 以97个野外草地样点实测地上净初级生产力(above-ground net primary productivity, ANPP)对模拟NPP进行验证, 模拟NPPANPP线性显著相关(R 2 = 0.49, p < 0.001)。利用降水量空间插值数据, 分析了近9年青藏高原植被PUE的空间分布、主要植被类型的PUE及其与降水量之间的变化关系。结果表明: 2000-2008年青藏高原地区植被年平均PUE沿东南向西北递减, 降水量和气温对植被PUE有着重要的影响; PUE在不同植被类型间差异较大, 其中农田PUE最高, 高寒草甸PUE高于高寒草原。在不同降水区域植被PUE与降水量的关系不同, 降水量低于90 mm的区域, 植被PUE值最低((0.026 ± 0.190) g C·m -2·mm -1, 平均值±标准偏差)、波动最大(变异系数CV = 721%), 与降水量和气温不相关(p = 0.38)。降水量为90-300 mm的地区, 植被PUE较低((0.029 ± 0.074) g C·m -2·mm -1, 平均值±标准偏差)、波动较大(CV = 252%), 与降水量和气温显著相关(p < 0.001), 降水量和气温能够解释PUE空间变化的43.4%, 其中降水量的影响是气温的1.7倍。降水量为300-650 mm的区域占整个研究区的45%, 主要植被类型为高寒草原, 植被PUE较高((0.123 ± 0.191) g C·m -2·mm -1, 平均值±标准偏差), CV为155%; 植被PUE的空间变化与降水量和气温极显著相关(p < 0.001), 降水量和气温能够解释植被PUE空间变化的97.8%, 但以气温影响为主导, 其影响是降水量的1.5倍。降水量为650 mm的区域, 植被PUE达到最高(0.26 g C·m -2·mm -1)。降水量为650-845 mm的区域主要是西藏林芝地区, 植被以常绿针叶林为主, PUE最高((0.210 ± 0.246) g C·m -2·mm -1, 平均值±标准偏差)、波动最小(CV = 117%); 降水量和气温可解释植被PUE空间变化的93.1% (p < 0.001), 降水量的影响是气温的3.5倍, 但其影响为负。  相似文献   

3.
人工林在陆地生态系统中起着重要的碳汇作用。本研究基于我国25个研究区的5个主要造林树种(刺槐、栓皮栎、杉木、樟子松和油松)的树木年轮数据,利用各研究区不同树种的生物量方程计算标准木的年均净初级生产力(NPP)进而扩展到林分尺度,利用InTEC模型及Law模型模拟各研究区不同人工林NPP与林龄的关系。结果表明:刺槐林、杉木林和油松林NPP随林龄表现出先增加后逐渐平稳的趋势,栓皮栎林和樟子松林NPP达到峰值后则出现下降的趋势。不同人工林NPP-林龄拟合曲线出现拐点的顺序为:樟子松林11年、杉木林14年、油松林16年、刺槐林20年。其拐点NPP分别为6.65、7.58、4.70和2.59 t·hm-2·a-1。InTEC及Law NPP-林龄模型在大尺度范围内都有较高的拟合精度,樟子松林InTEC模型R2最低(R2=0.95),均方根误差(RMSE)为0.55 t·hm-2·a-1;杉木林InTEC模型R2最高(R2=...  相似文献   

4.
以内蒙古大青山华北落叶松人工林为研究对象,通过树木年轮法和异速生长方程法,计算华北落叶松人工林生物量、碳密度及其年增量的年际变化,并分析碳密度年增量与气温、降水、湿度等气象因子的关系。研究发现:华北落叶松人工林碳密度随着林龄增加的变化曲线可用逻辑斯谛生长方程拟合,在1979—2016年,碳密度由1.05 t/hm~2增加到76.83 t/hm~2。华北落叶松人工林碳密度年增量存在显著的年际差异,总体上呈波动性的“慢-快-慢”趋势,碳密度年增量最高达到3.72 t hm-2 a-1,多年平均为2.05 t hm-2 a-1。华北落叶松人工林碳密度年增量与上年6月和当年6—8月的降水量显著正相关,与上年11月降水显著负相关;与上年11—12月、当年2月和12月的温度和大气相对湿度分别呈正、负相关;与上年7月、9月及当年8—9月的温度保持显著或极显著正相关。研究表明,温度、湿度和降水主要通过生长季的长短和土壤可利用水分及冬季的雪害冻害影响华北落叶松人工林的碳汇潜力,在未来该地区升温增湿的气候变化趋势下华北...  相似文献   

5.
小兴安岭7种典型林型林分生物量碳密度与固碳能力   总被引:2,自引:0,他引:2       下载免费PDF全文
森林生物碳储量作为森林生态系统碳库的重要组成部分, 在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象, 通过外业样地调查与室内实验分析相结合的方法, 从林分尺度对林分生物量与碳密度进行计量, 分析了林分生物碳储量的空间分配格局, 并对林分年固碳能力与碳汇潜力进行了探讨。结果表明: 小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为: 蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var. mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为: 红松林31.4、74.7、118.4和130.2 t·hm-2; 兴安落叶松林28.9、44.3、74.2和113.3 t·hm-2; 樟子松林22.8、52.0、71.1和92.6 t·hm-2; 云冷杉林23.1、44.1、77.6和130.3 t·hm-2; 白桦林18.8、35.3、66.6和88.5 t·hm-2; 蒙古栎林25.0、20.0、47.5和68.9 t·hm-2; 山杨林19.8、28.7、43.7和76.6 t·hm-2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高, 其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加, 但不同林型的碳汇功能存在差异, 同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4-2.8 t·hm-2之间, 碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差, 幼龄林和中龄林所占的比重较大, 具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

6.
六种人工针叶幼林下地表苔藓植物生物量与碳贮量   总被引:9,自引:0,他引:9  
调查了岷江上游6种人工针叶幼林(油松林、华山松林、日本落叶松林、云杉林、油松-华山松混交林和云杉-华山松混交林)下地表苔藓植物生物量,测定了C含量并估计了林分地表苔藓植物C贮量,比较分析了它们的差异性.结果表明,6种人工针叶幼林下地表苔藓植物总生物量在3.11~460.36 kg·hm-2之间,而平均C含量在37.44±0.21%~3.9±0.70%之间,总C贮量在1.12±0.03~168.9±0.92 kg·hm-2之间,但在样方水平上只有云杉林地表苔藓植物生物量与其它林型间差异明显,落叶松林下C含量与其它差异明显(P<0.0).6种人工林类型中,云杉林地表苔藓植物总生物量和C贮量最高,华山松林下最低.综合分析表明,样方调查数量与布局对生物量取样精度有重要影响,岷江上游人工林下地表苔藓植物生物量与C贮量较低,林分类型与林分特征有重要影响,而疏伐、修枝等措施是改善人工密林下地表苔藓植物发育,增加生物量与C贮量的有效管理措施.  相似文献   

7.
探讨人工林发育过程中土壤温室气体排放及其机制,可为森林温室气体通量估算提供理论依据。采用室内培养方法研究了黑龙江省帽儿山地区不同林龄(15、30和50年生)红松(Pinus koraiensis)和落叶松(Larix gmelinii)人工林土壤温室气体排放/吸收速率及其调控因素。结果表明:30年生红松和落叶松人工林土壤CO2排放速率(红松:(1724.18±98.57)μg C·kg-1·h-1;落叶松:(1306.37±142.27)μg C·kg-1·h-1)和CH4吸收速率(红松:(5.12±0.68)μg C·kg-1·h-1;落叶松:(1.91±0.85)μg C·kg-1·h-1)显著高于15和50年生(P<0.05)。30年生红松人工林土壤N2O排放速率显著高于15和50年生(P<0.05),而落叶松人工林土壤N2O排放速率随林龄增加变化不显著。红松和落叶松人工林土壤N2O排放速率最大值分别为(0.139±0.016)和(0.137±0.056)μg N·kg-1·h-1。红松人工林土壤CO2排放速率均高于同龄落叶松人工林,15和30年生达到显著水平(P<0.05)。红松人工林土壤CH4吸收速率均显著高于同龄落叶松人工林(P<0.05)。红松人工林土壤N2O排放速率与同龄落叶松人工林土壤均无显著差异。混合线性模型分析显示,影响红松和落叶松人工林发育过程中土壤CO2排放速率的主要因素是土壤全碳含量和微生物生物量氮,其中微生物生物量氮受树种和林龄的影响。CH4吸收速率受到微生物生物量碳、溶解性有机碳和溶解性有机氮含量影响,其中微生物生物量碳受树种和林龄调控。N2O排放速率受溶解性有机氮、铵态氮和硝态氮影响,其中溶解性有机氮受林龄影响。综上所述,树种和林龄差异造成的土壤理化性质和微生物生物量碳氮的异质性可在一定程度上解释土壤温室气体排放/吸收速率的差异。  相似文献   

8.
内蒙古植被降水利用效率的时空格局及其驱动因素   总被引:4,自引:0,他引:4       下载免费PDF全文
植被降水利用效率(precipitation-use efficiency, PUE)是评价干旱、半干旱地区植被生产力对降水量时空动态响应特征的重要指标。该研究利用光能利用率CASA (Carnegie-Ames-Stanford Approach)模型估算了2001-2010年内蒙古地区植被净初级生产力(net primary productivity, NPP), 结合降水量的空间插值数据, 分析了近10年内蒙古地区植被PUE的空间分布、主要植被类型的PUE,及其时空格局的驱动因素。结果表明: 2001-2010年内蒙古地区所有植被的平均PUE为0.94 g C·m-2·mm-1, 且在105-120° E地带性规律明显,PUE上升速率为每10° 0.55 g C·m-2·mm-1。各植被类型间PUE差别较大, 其中灌丛PUE最高, 荒漠PUE最低。在不同的降水量区域, 植被PUE的空间分布与气候因子的关系有较大差别, 0-75 mm降水量区间内, PUE随降水量、气温的升高显著下降(R2 = 0.226, p < 0.05); 175-300 mm降水量区间内, 植被 PUE的空间变化与降水量和气温呈极显著相关关系(R2 = 0.878, p < 0.001), 且随降水量的增加显著上升( R2 = 0.94, p < 0.001), 变化速率约为每100 mm降水0.57 g C·m -2·mm-1; 在降水量大于475 mm的区域, 植被PUE的空间分布与降水量、气温的相关性显著(R2 = 0.19, p < 0.05), 且随着气温的上升、降水量的下降而增加, 其中气温的贡献是降水量的8.61倍。在不同的降水量区域, 植被 PUE的年际波动与气候因子的关系也有较大差别, 对于年降水量0-220 mm的地区, PUE的年际波动与降水量呈正相关性、与气温呈负相关性; 在年降水量为220-310 mm的地区, PUE的年际波动主要受降水量的控制, 受气温影响较小; 在年降水量>310 mm的地区,PUE的年际波动与降水量、气温均呈正相关关系, 但在降水量越高的地区, PUE的年际波动与降水量的相关性越弱, 与气温的相关性越强。植被覆盖度与PUE的空间分布极显著相关(R2 = 0.73, p < 0.001), 且与 PUE的年际波动也存在线性相关关系(R2 = 0.11, p < 0.001); 叶面积指数( LAI)与PUE的年际波动呈线性相关关系(R2 = 0.42, p < 0.001), 而当 LAI < 3.15时, PUE的空间分布随LAI增加而呈线性增加。  相似文献   

9.
六盘山南坡不同密度华北落叶松水源林生长过程比较   总被引:6,自引:0,他引:6  
以六盘山南侧的华北落叶松水源涵养林为研究对象,利用标准木树干解析法,研究了21年生低、中、高3种密度(1200、1500和2000 株·hm-2)华北落叶松人工林的生长过程和直径结构.结果表明:华北落叶松3种密度林分在10年生前各项生长指标差异不显著;10年生后的林木直径、单株材积和林分蓄积生长过程明显不同;21年生时,低密度林分的生长状况明显优于中、高密度林分,但树高生长受密度影响不显著;3种密度林分直径分布的偏度系数(Sk)差异较大,高密度林分的Sk(0.338)大于中密度(0.072)和低密度林分(0.015).前者直径分布偏离正态分布,呈现顶峰偏左的现象;后者的直径分布接近正态分布,密度结构较合理;中密度林分直径分布的峰度系数(K,1.691)大于高密度(1.532)和低密度林分(0.665).说明中密度林分的林木分化程度比高、低密度林分小;林龄为21年的华北落叶松人工林的合理保留密度应为1200 株·hm-2.  相似文献   

10.
杨凤萍  胡兆永  侯琳  蔡靖  崔翠  张硕新 《生态学报》2014,34(22):6489-6500
以秦岭火地塘林区油松(Pinus tabulaeformis)和华山松(Pinus armandi)林为研究对象,以其生物量及树高-胸径模型为基础,运用树木年轮宽度方法推算出1973年至2011年生物量和生产力年际动态,并通过相关分析和多元逐步回归分析探讨了油松和华山松林乔木层净生产力与温度、降水之间的关系。结果显示,该林区油松林和华山松林乔木层生物量39a间增长迅速,分别从1973年的15.32 t/hm2和7.53 t/hm2增长到2011年的175.97 t/hm2和130.98 t/hm2,平均年净生产力分别为4.18 t hm-2a-1和3.20 t hm-2a-1,油松林乔木层生物量和生产力均高于华山松林;气候分析表明年净生产力与降水关系不明显,与温度关系较为密切,随气温升高呈波动上升趋势:单月气候因子中上年7月温度、当年7月温度与油松林乔木层净生产力显著正相关,上年7月温度与华山松林乔木层净生产力显著正相关;油松林乔木层净生产力动态变化主要受1—7月平均温度影响,华山松林主要受5—7月平均温度影响;油松林生产力与温度因子的相关性高于华山松林。两种林型的生物量和生产力差异是由油松和华山松生物学特性所致。  相似文献   

11.
《植物生态学报》2017,41(8):826
Aims Climate change has significant effects on net primary productivity (NPP) in forests, but there is a large uncertainty in the direction and magnitude of the effects. Process-based models are important tools for understanding the responses of forests to climate change. The objective of the study is to simulate changes in NPP of Larix olgensis plantations under future climate scenarios using 3-PG model in order to guide the management of L. olgensis plantations in the context of global climate change.Methods Data were obtained for 30 permanent plots of L. olgensis plantations in Siping, Linjiang, Baishan, etc. of Jilin Province, and a process model, 3-PG model, was applied to simulate changes in NPP over a rotation period of 40 years under different climate scenarios. Parameter sensitivity was also determined. Important findings The locally parameterized 3-PG model well simulates the changes in NPP against the measured NPP data, with values between 272.79-844.80 g·m-2·a-1 and both mean relative error and relative root mean square error within 12%. The NPP in L. olgensis plantations would increase significantly with increases in atmospheric CO2 concentration, temperature and precipitation collectively. However, an increase in temperature alone would lead to a decrease in NPP, but increases in precipitation and atmospheric CO2 concentration would increase NPP; the positive effect of increasing precipitation appears to be weaker than the negative effect of increasing temperature. Sensitivity analysis shows that the model performance is sensitive to the optimum temperature, stand age at which specific leaf area equals to half of the sum of specific leaf area at age 0 (SLA0) and that for mature leaves (SLA1), and days of production loss due to frost.  相似文献   

12.
《植物生态学报》2017,41(9):925
Aims Net primary production (NPP) is the input to terrestrial ecosystem carbon pool. Climate and land use change affect NPP significantly. Shrublands occupy more than 20% of the terrestrial area of China, and their NPP is comparable to those of the forests. Our objective was to estimate China shrubland NPP from 2001 to 2013, and to analyze its variation and response to climate change.Methods We used a Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of six shrubland types in China from 2001 to 2013. Furthermore, we used Theil-Sen slope combined with Mann-kendall test to analyze its spatial variation and a linear regression of one-variable model to analyze its inter- and intra-annual variation. Finally, a multi-factor linear regression model was used to analyze its response to climate change.Important findings We found the annual mean NPP of China shrubland was 281.82 g•m-2•a-1. The subtropical evergreen shrubland has the maximum NPP of 420.47 g•m-2•a-1, while the high cold desert shrubland has the minimum NPP of 52.65 g•m-2•a-1. The countrywide shrublands NPP increased at the rate of 1.23 g•m-2•a-1, the relative change rate was 5.99%. The temperate deciduous shrubland NPP increased the fastest with a speed of 3.05 g•m-2•a-1 and subalpine evergreen shrubland had a decreasing trend with a speed of -0.73 g•m-2•a-1. Moreover, the other four shrublands NPP had a growing trend, only subalpine deciduous shrubland NPP did not change significantly. The response of NPP to climate change of different seasons varies to different shrubland types. In general, the NPP variation was mainly affected by precipitation, and the spring warming also contributed to it. The increase of countrywide shrubland NPP may promote its contribution to the regional ecosystem function.  相似文献   

13.
《植物生态学报》2015,39(11):1071
AimsOur objectives were to determine differences in fine root production, its relationships with environmental factors, and its diameter- and depth-related distribution patterns between plantations of two subtropical tree species differing in successional stages. MethodsPlantation forests of an early-successional species, Pinus massoniana, and a late-successional species, Castanopsis carlesii, in Sanming, Fujian Province, were selected. Fine root production was monitored for two years using minirhizotrons methods. At the same time, environmental factors including monthly air temperature, monthly precipitation, soil temperature, and soil water content were determined.Important findings 1) During the two years, there was significant difference in annual fine root length production between these two forests, with annual production of P. massoniana plantation nearly four times that of C. carlesii plantation. Fine root length production under both forests showed significant monthly dynamics and maximized in summer, a season when most of fine roots were born. 2) Roots of 0-0.3 mm in diameter accounted for the largest proportion of total fine root length production. Fine roots were concentrated mostly at the 0-10 cm soil depth in P. massoniana plantation, but happened mostly at the 30-40 cm soil depth in the C. carlesii plantation. 3) Partial correlation analysis suggested that, monthly fine root production of both forests was significantly correlated with both air temperature and soil temperature, while it had no significant correlation with either rainfall or soil water content. Linear regression analysis illustrated that monthly fine root production was more correlated with air temperature and soil temperature in the P. massoniana plantation than in the C. carlesii plantation. It was concluded that fine root production in the early-successional P. massoniana plantation was not only much higher in amount, but also more sensitive to temperature, than that in the late-successional C. carlesii plantation.  相似文献   

14.
全球气候变暖背景下, 西南地区气候呈现出明显的暖干化特征, 但区域优势树种云南松(Pinus yunnanensis)对气候暖干化的响应存在不确定性。该研究根据树木年代学方法选择研究区域87株云南松样本进行树芯采集, 构建云南松树轮年表, 结合1952-2016年的气温和降水等气象资料, 利用响应分析、多元回归分析以及滑动相关分析等方法研究了影响南盘江流域云南松径向生长的关键气候因子及其对气候暖干化的响应规律。研究结果表明: 1985年以来, 研究区域气候暖干化特征明显, 气温上升和降水量下降的速率是1984年前的5和6倍, 年平均气温、年平均最高气温、年平均最低气温的上升速率为0.044、0.041和0.050 ℃·a -1, 年降水量的下降速率为 6.02 mm·a -1。气候暖干化使云南松的生长对温度响应的敏感度降低, 对水分响应的敏感度增强, 气温的解释率由暖干化前的44.95%下降到21.97%, 水分的解释率由暖干化前的55.05%上升到78.03%。暖干化增强了当年气候因子对径向生长的影响, 减弱了上年气候因子的影响, 与径向生长显著相关的当年气候因子增加了3个, 当年气候因子对径向生长的解释率增加了16.05%。暖干化减弱了云南松生长的“滞后效应”, 气候变化对树木生长影响的时效性增强。在5-7月和9-11月, 气候变暖使径向生长与气温、水分的响应关系变得不稳定。该研究可为气候暖干化区域云南松林的经营、管理以及区域气候重建提供理论依据和基础数据。  相似文献   

15.
传统的元素限制模型认为氮是温带森林生长的限制元素, 不过该结论更多是从地上生物量以及群落水平进行阐述, 忽视了不同物种以及不同径级树木对外源氮的响应差异。辽东栎(Quercus wutaishanica)林是华北地区常见的森林类型, 该研究以北京东灵山辽东栎林为研究对象, 通过设置3个氮添加水平的实验, 即对照CK (0 kg·hm -2·a -1), N50 (50 kg·hm -2·a -1)和N100 (100 kg·hm -2·a -1), 模拟氮沉降对群落和物种水平以及不同径级树木生长的影响。经过7年氮添加, 实验结果显示: 物种水平上, 氮添加明显促进了优势树种辽东栎的生长; 群落水平上, 树木生长随氮浓度增加有不断上升趋势, 但统计学差异不显著; 氮添加显著抑制了辽东栎以及群落内小径级(3-10 cm)树木生长, 中(10-20 cm)、大径级(>20 cm)树木生长随氮沉降水平增加呈上升趋势, 但统计学差异不显著。表明氮是辽东栎以及温带森林树木生长的限制元素; 不同径级的辽东栎和群落内其他植物对氮添加响应不一致, 氮添加抑制了小径级树木生长, 中、大径级树木生长对氮添加响应不明显。  相似文献   

16.
呼伦贝尔沙地樟子松外生菌根真菌多样性   总被引:1,自引:0,他引:1  
沙地樟子松是我国北方重要的防风固沙造林树种,也是一种典型的外生菌根依赖型树种。为揭示呼伦贝尔沙地樟子松外生菌根真菌多样性,以中龄、近熟、成熟3个龄组沙地樟子松人工林和沙地樟子松天然林为研究对象,采用野外调查和分子生物学相结合的研究方法,鉴定分析沙地樟子松外生菌根真菌种群特征。研究结果表明:(1)呼伦贝尔沙地樟子松外生菌根真菌共有10个OTU属于子囊菌,48个OTU属于担子菌,隶属于21科25属。(2)天然林优势菌为糙缘腺革菌属Amphinema、丝膜菌属Cortinarius和乳牛肝菌属Suillus,人工林优势菌为乳牛肝菌属,其余菌种相对丰度随着林龄变化波动较大。(3)天然林与人工林外生菌根真菌种群Shannon、Simpson和Pielou指数存在显著差异(P<0.05),人工林间alpha多样性指数差异不显著(P>0.05)。(4)呼伦贝尔沙地樟子松天然林和人工林外生菌根真菌种群组成存在较大差异,其中近熟林的外生菌根真菌群落组成与天然林的最为接近。  相似文献   

17.
基于野外调查与室内实测数据,结合第八次全国森林资源清查资料,分析了甘肃省5种典型人工林生态系统(刺槐、杨树、油松/华山松、落叶松及云杉林)森林生态系统碳密度、碳储量,并估算了乔木层固碳潜力.结果表明: 5种典型人工林生态系统平均碳密度和总碳储量分别为139.65 t·hm-2和85.78 Tg,不同人工林类型之间差异较大.不同龄组间碳密度表现为近熟林(250.70 t·hm-2)最大,其次是成熟林(175.97 t·hm-2)和中龄林(156.92 t·hm-2),幼龄林(117.56 t·hm-2)最低.碳储量表现为幼龄林(45.47 Tg)>中龄林(19.54 Tg)>成熟林(11.84 Tg)>近熟林(8.93 Tg),幼中龄林碳储量占总碳储量的75.9%.5种典型人工林乔木层现实固碳潜力合计为7.27 Tg,刺槐林(2.49 Tg)和杨树林(2.10 Tg)最大;各龄组中,幼龄林现实固碳潜力最大(3.78 Tg),其次是中龄林(2.04 Tg),近熟林最小(0.45 Tg).5种典型人工林乔木层最大固碳潜力达27.55 Tg,表现为刺槐林(9.42 Tg)>落叶松林(6.22 Tg)≈云杉林(6.36 Tg)>杨树林(3.18 Tg)>油松/华山松林(2.37 Tg);其中,幼、中龄林最大固碳潜力分别为18.48和6.89 Tg,占总最大固碳潜力的92%.  相似文献   

18.
中国寒温带不同林龄白桦林碳储量及分配特征   总被引:1,自引:0,他引:1       下载免费PDF全文
魏红  满秀玲 《植物生态学报》2019,43(10):843-852
为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。  相似文献   

19.
《植物生态学报》2016,40(7):643
Aims Subtropical forest ecosystem has great carbon sequestration capacity. Net primary productivity (NPP) plays a critical role in forest carbon cycle and is affected by a number of factors, including climate change, atmospheric composition, forest disturbance intensity and frequency, and forest age, etc. However, the contribution of these factors to the temporal-spatial dynamics of NPP is still not clear. Quantifying the main driving forces on the temporal-spatial dynamics of NPP for subtropical forest ecosystems is a critical foundation for understanding their carbon cycle.
Methods We utilized multi-sources dataset, including observed meteorological data, inversed annual maximum leaf area index (LAI), referenced NPP (simulated by Boreal Ecosystem Productivity Simulator (BEPS) model), forest age and forest types, land cover, digital elevation model (DEM), soil texture, CO2 concentration and nitrogen deposition. We used the InTEC (integrated terrestrial ecosystem carbon-budget) model to simulate the NPP dynamics for forest ecosystems in Jiangxi Province during the period of 1901-2010. The effects of climate change, forest age, CO2 concentration and nitrogen (N) deposition on forest NPP from 1970 to 2010 were discussed through designed scenarios.
Important findings (1) Validations by flux measurements and forest inventory data indicated that the InTEC model was able to capture the interannual and spatial variations of forest NPP. (2) The average forest NPP was 47.7 Tg C·a-1 (± 4.2 Tg C·a-1) during 1901-2010. The NPP in the 1970s, 1980s, 1990s and 2000s was 50.7, 48.8, 45.4, and 55.2 Tg C·a-1, respectively. As forest regrows, NPP significantly increased for forests in Jiangxi Province in the 2000s, and exceed that in the 1970s for more than 60% of the forest area. (3) During 1970-2010, under the scenarios of disturbance and non-disturbance, the forest NPP were underestimated by 7.3 Tg C·a-1 (14.5%) and overestimated by 3.6 Tg C·a-1 (7.1%) compared to the scenarios of all disturbance and non-disturbance factors, respectively. Compared to the average NPP during 1970-2010, climate change decreased NPP by -2.0 Tg C·a-1 (-4.7%), N deposition increased NPP by 4.5 Tg C·a-1 (10.4%), CO2 concentration change, and the integrated fertilization of CO2 and N deposition increased NPP by 4.4 Tg C·a-1 (10.3%) and 9.4 Tg C·a-1 (21.8%), respectively.  相似文献   

20.
《植物生态学报》2016,40(4):318
Aims
Sparse Ulmus pumila forest is an intrazonal vegetation in Onqin Daga Sandy Land, while Populus simonii has been widely planted for windbreak and sand dune stabilization in the same region. Our objective was to compare the differences in carbon (C) density of these two forests and their relationships with stand age.
Methods
We measured the C content of tree organs (leaf, twig, stem, and root), herb layers (above ground vegetation and below ground root) and soil layers (up to 100 cm) in sparse Ulmus pumila forests and Populus simonii plantations of different stand ages, and then computed C density and their proportions in total ecosystem carbon density. In addition, we illustrated the variation in carbon density-stand age relationship for tree layer, soil layer and whole ecosystem. We finally estimated the C sequestration rates for these two forests by the space-for-time substitution approach.
Important findings
The average C contents of tree layer and soil layer for sparse Ulmus pumila forests were lower than those for Populus simonii plantations. The total C density of sparse Ulmus pumila forests was half of that of Populus simonii plantations. The carbon density of soil and tree layers accounted for more than 98% of ecosystem C density in the two forests. Irrespective of forest type, the C density ratios of soil to vegetation decreased with stand age. This ratio was 1.66 for sparse Ulmus pumila forests and 1.87 for Populus simonii plantations when they were over-matured. The C density of tree layer, soil layer, and total ecosystem in both forests increased along forest development. There were significantly positive correlations between tree layer’s C density and stand age in both forests and between the total ecosystem C density of sparse Ulmus pumila forests and stand age. The C sequestration rate of tree layer was 5-fold higher in Populus simonii plantation than in sparse Ulmus pumila forest. The ecosystem-level C sequestration rate was 0.81 Mg C·hm-2·a-1 for sparse Ulmus pumila forest and 5.35 Mg C·hm-2·a-1 for Populus simonii plantation. These findings have implications for C stock estimation of sandy land forest ecosystems and policy-making of ecological restoration and C sink enhancement in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号