首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.  相似文献   

2.
Evolution of plant mitochondrial genomes via substoichiometric intermediates   总被引:28,自引:0,他引:28  
I Small  R Suffolk  C J Leaver 《Cell》1989,58(1):69-76
Comparison of the modern fertile maize mitochondrial genome (N) with an ancestral maize mitochondrial genome (RU) reveals a 12 kb duplication (containing the atpA gene) in the modern genome that is absent from the ancestor. Cloning, mapping, and sequencing of the relevant portions of the ancestral genome shows that this duplication probably arose via a three-stage recombination process involving substoichiometric intermediates. Comparison with analogous observations on yeast mitochondrial genomes suggests that this three-stage model of genome reorganization can be generally applied to plant mitochondrial genomes to explain both deletions and the creation of novel repeats, common features of plant mitochondrial genome evolution.  相似文献   

3.
Plant mitochondrial genomes have features that distinguish them radically from their animal counterparts: a high rate of rearrangement, of uptake and loss of DNA sequences, and an extremely low point mutation rate. Perhaps the most unique structural feature of plant mitochondrial DNAs is the presence of large repeated sequences involved in intramolecular and intermolecular recombination. In addition, rare recombination events can occur across shorter repeats, creating rearrangements that result in aberrant phenotypes, including pollen abortion, which is known as cytoplasmic male sterility (CMS). Using next-generation sequencing, we pyrosequenced two rice (Oryza sativa) mitochondrial genomes that belong to the indica subspecies. One genome is normal, while the other carries the wild abortive-CMS. We find that numerous rearrangements in the rice mitochondrial genome occur even between close cytotypes during rice evolution. Unlike maize (Zea mays), a closely related species also belonging to the grass family, integration of plastid sequences did not play a role in the sequence divergence between rice cytotypes. This study also uncovered an excellent candidate for the wild abortive-CMS-encoding gene; like most of the CMS-associated open reading frames that are known in other species, this candidate was created via a rearrangement, is chimeric in structure, possesses predicted transmembrane domains, and coopted the promoter of a genuine mitochondrial gene. Our data give new insights into rice mitochondrial evolution, correcting previous reports.  相似文献   

4.
ABSTRACT: BACKGROUND: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS: Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS: Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.  相似文献   

5.
Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes.  相似文献   

6.
The genesis of small repeats involved in infrequent recombinations in plant mitochondrial genomes remains unclear. We propose that at least some of the small repeats are generated in a similar way to the large, highly recombinogenic, plant mitochondrial repeats. A 314-bp sequence was detected as a small, rarely recombining mitochondrial repeat in the genus Phaseolus. Two of the recombinational forms were predominant, while two others were found in substoichiometric amounts in the species P. vulgaris, P. polyanthus and P. coccineus. However, the pairs of predominant and substoichiometric forms were distinct in each genome, indicating that a mechanism other than recombination is responsible for their maintenance in high or low copy number. In P. lunatus, which is phylogenetically quite remote from the other species examined, only one form of the 314-bp repeat was predominant, while the other forms were present in substoichiometric amounts. In this genome, we also identified sequences containing the terminal 11 or 7 bp of the 314-bp repeat. These configurations could serve as intermediates during generation of the repeat. We presume that two site-specific recombinations between the intermediates and the predominant form found in P. lunatus resulted in creation of the two new forms of the repeat. The fourth form of the repeat appeared after a further recombination that occurred at the substoichiometric level. The nature of this recombination, whether site-specific or homologous, is discussed. Beyond the evident similarities between the model presented in this work and the three-recombination models previously proposed to explain the formation of large, frequently recombining repeats, we did not detect any specific deletion associated with generation of the repeat.  相似文献   

7.
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.  相似文献   

8.
Plant cells possess two more genomes besides the central nuclear genome: the mitochondrial genome and the chloroplast genome (or plastome). Compared to the gigantic nuclear genome, these organelle genomes are tiny and are present in high copy number. These genomes are less prone to recombination and, therefore, retain signatures of their age to a much better extent than their nuclear counterparts. Thus, they are valuable phylogenetic tools, giving useful information about the relative age and relatedness of the organisms possessing them. Unlike animal cells, mitochondrial genomes of plant cells are characterized by large size, extensive intramolecular recombination and low nucleotide substitution rates and are of limited phylogenetic utility. Chloroplast genomes, on the other hand, show resemblance to animal mitochondrial genomes in terms of phylogenetic utility and are more relevant and useful in case of plants. Conservation in gene order, content and lack of recombination make the plastome an attractive tool for plant phylogenetic studies. Their importance is reflected in the rapid increase in the availability of complete chloroplast genomes in the public databases. This review aims to summarize the progress in chloroplast genome research since its inception and tries to encompass all related aspects. Starting with a brief historical account, it gives a detailed account of the current status of chloroplast genome sequencing and touches upon RNA editing, ycfs, molecular phylogeny, DNA barcoding as well as gene transfer to the nucleus.  相似文献   

9.
As part of the worldwide efforts at molecular analysis of Arabidopsis thaliana as a model plant the complete structure of the mitochondrial genome has been determined. The mitochondrial DNA molecules were mapped by restriction fragment analysis of more than 300 cosmid clones and purified mitochondrial DNA. The entire genome of 372 kb is contained in three different configurations of circular molecules and is split into two additional subgenomic molecules of 234 kb and 138 kb, respectively. These arrangements result from recombinations of the two sets of repeats present in combinations of inverted and/or direct orientation. Alignment of YAC clones confirms the in vivo presence of continuous DNA molecules of more than 300 kb in A. thaliana mitochondria. The presence of this comparatively large mitochondrial genome in a plant with one of the smallest nuclear genomes shows that different size constraints act upon the different genomes in plant cells.  相似文献   

10.
At 443 kb, the map of Petunia hybrida line 3704 mitochondrial DNA is the largest yet produced from a dicot plant. Regions of similarity to known plant mitochondrial genes and to the chloroplast genome have been placed on a master circle. One long repeated sequence, apparently active in recombination, is present in three copies. Two copies of 6.6 kb occur in a direct orientation and are separated by 199 kb. A third truncated copy of 3.5 kb is inverted relative to the other two and is separated from the others by 99 and 145 kb. The presence of the recombination repeats predicts a multipartite molecular organization, consisting of four master circles and three subgenomic circles. Two other repeated regions were found not to be substrates for, or products of recombination. The absence of recombination at certain reiterated regions indicates that there is specificity of recombination at the recombination repeats.  相似文献   

11.
We constructed complete physical maps of the tripartite mitochondrial genomes of two Crucifers, Brassica nigra (black mustard) and Raphanus sativa (radish). Both genomes contain two copies of a direct repeat engaged in intragenomic recombination. The outcome of this recombination in black mustard is to interconvert a 231 kb master chromosome with two subgenomic circles of 135 kb and 96 kb. In radish, a 242 kb master chromosome interconverts with subgenomic circles of 139 kb and 103 kb. The recombination repeats are 7 kb in size in black mustard and 10 kb in radish, and are nearly identical except for two insertions in the radish repeat relative to the black mustard one. The two repeat configurations present on the master chromosome of black mustard are located on the subgenomes of radish and vice-versa. To explain this, we postulate the existence of an evolutionarily intermediate mitochondrial genome in which the recombination repeats were (are) present in an inverted orientation. The recombination repeats described for these two species are completely different from those previously found in the closely related species B. campestris, implying that such repeats are created and lost frequently in plant mitochondrial DNAs and making it less than likely that recombination occurs in a site-specific manner.  相似文献   

12.
The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region.  相似文献   

13.
14.
Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants.  相似文献   

15.
The genomes of flowering plants vary in size from about 0.1 to over 100 gigabase pairs (Gbp), mostly because of polyploidy and variation in the abundance of repetitive elements in intergenic regions. High-quality sequences of the relatively small genomes of Arabidopsis (0.14 Gbp) and rice (0.4 Gbp) have now been largely completed. The sequencing of plant genomes that have a more representative size (the mean for flowering plant genomes is 5.6 Gbp) has been seen as a daunting task, partly because of their size and partly because of the numerous highly conserved repeats. Nevertheless, creative strategies and powerful new tools have been generated recently in the plant genetics community, so that sequencing large plant genomes is now a realistic possibility. Maize (2.4-2.7 Gbp) will be the first gigabase-size plant genome to be sequenced using these novel approaches. Pilot studies on maize indicate that the new gene-enrichment, gene-finishing and gene-orientation technologies are efficient, robust and comprehensive. These strategies will succeed in sequencing the gene-space of large genome plants, and in locating all of these genes and adjacent sequences on the genetic and physical maps.  相似文献   

16.
Xu J  Fonseca DM 《Mitochondrial DNA》2011,22(5-6):155-158
Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.  相似文献   

17.
Origin and fate of repeats in bacteria   总被引:9,自引:1,他引:8       下载免费PDF全文
We investigated 53 complete bacterial chromosomes for intrachromosomal repeats. In previous studies on eukaryote chromosomes, we proposed a model for the dynamics of repeats based on the continuous genesis of tandem repeats, followed by an active process of high deletion rate, counteracted by rearrangement events that may prevent the repeats from being deleted. The present study of long repeats in the genomes of Bacteria and Archaea suggests that our model of interspersed repeats dynamics may apply to them. Thus the duplication process might be a consequence of very ancient mechanisms shared by all three domains. Moreover, we show that there is a strong negative correlation between nucleotide composition bias and the repeat density of genomes. We hypothesise that in highly biased genomes, non-duplicated small repeats arise more frequently by random effects and are used as primers for duplication mechanisms, leading to a higher density of large repeats.  相似文献   

18.
The structure of plant mitochondrial genomes has proven to be complex and difficult to study. Recombination across large and small repeated sequences can result in genome diversity within individual plants, as well as rapid evolutionary change in genome structure. The role of these repeats is becoming more obvious as mitochondrial genomes are examined in detail.  相似文献   

19.
Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study we surveyed the patterns of SSRs in mitochondrial genomes of different taxa of plants. A total of 16 mitochondrial genomes, from algae to angiosperms, have been considered to analyze the pattern of simple sequence repeats present in them. Based on study, the mononucleotide repeats of A/T were found to be more prevalent in mitochondrial genomes over other repeat types. The dinucleotides repeats, TA/AT, were the second most numerous, whereas tri-, tetra-, and pentanucleotide repeats were in less number and present in intronic or intergenic portions only. Mononucleotide repeats prevailed in protein-coding exonic portions of all organisms. These results indicates that microsatellite pattern in mitochondrial genomes is different from nuclear genomes and also focuses on organization and diversity at SSR locuses in mitochondrial genomes. This is the novel report of microsatellite polymorphism in plant mitochondrion on whole genome level.  相似文献   

20.
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号