首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant-cell expansion is controlled by cellulose microfibrils in the wall with microtubules providing tracks for cellulose synthesizing enzymes. Microtubules can be reoriented experimentally and are hypothesized to reorient cyclically in aerial organs, but the mechanism is unclear. Here, Arabidopsis hypocotyl microtubules were labelled with AtEB1a-GFP (Arabidopsis microtubule end-binding protein 1a) or GFP-TUA6 (Arabidopsis alpha-tubulin 6) to record long cycles of reorientation. This revealed microtubules undergoing previously unseen clockwise or counter-clockwise rotations. Existing models emphasize selective shrinkage and regrowth or the outcome of individual microtubule encounters to explain realignment. Our higher-order view emphasizes microtubule group behaviour over time. Successive microtubules move in the same direction along self-sustaining tracks. Significantly, the tracks themselves migrate, always in the direction of the individual fast-growing ends, but twentyfold slower. Spontaneous sorting of tracks into groups with common polarities generates a mosaic of domains. Domains slowly migrate around the cell in skewed paths, generating rotations whose progressive nature is interrupted when one domain is displaced by collision with another. Rotary movements could explain how the angle of cellulose microfibrils can change from layer to layer in the polylamellate cell wall.  相似文献   

2.
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.  相似文献   

3.
4.
5.
Summary By quantitative analysis of cellulose microfibril orientation at different levels in the primary cell wall of a number of cell types, the development of wall texture was studied. Meristematic, isodiametric and cylindrical parenchyma cells and cells of a suspension culture were used. Within the newly deposited microfibril population, various orientations were recognized on the micrographs. Within subpopulations the orientation of undercrossing and overcrossing microfibrils were measured. These measurements showed a gradual shift in cellulose microfibril orientation in the different levels. Microfibrils showed predominant orientations at particular levels but microfibrils of intermediate orientation also occurred, although at a much lower density. As cellulose microfibrils of intermediate orientation were not closely packed, lamellae were not formed. Interwoven microfibrils were occasionally present, indicating that differently orientated microfibrils are occasionally deposited simultaneously. Also gradual changes in orientation over the entire inner cell wall surface were observed. From these observations it was inferred that microfibril deposition occurs with a small but regular and progressive change in orientation, the rotational motion, related to that of a helicoidal system.Dedicated to Professor Dr. M. M. A. Sassen on the occasion of his 65th birthday  相似文献   

6.
Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.  相似文献   

7.
The gibberellins (GAs) are endogenous regulators of plant growth. Experiments are described here that test the hypothesis that GA regulates hypocotyl growth by altering the extent of hypocotyl cell elongation. These experiments use GA-deficient and altered GA-response mutants of Arabidopsis thaliana (L.) Heyhn. It is shown that GA regulates elongation, in both light- and dark-grown hypocotyls, by influencing the rate and final extent of cellular elongation. However, light- and dark-grown hypocotyls exhibit markedly different GA dose-response relationships. The length of dark-grown hypocotyls is relatively unaffected by exogenous GA, whilst light-grown hypocotyl length is significantly increased by exogenous GA. Further analysis suggests that GA control of hypocotyl length is close to saturation in dark-grown hypocotyls, but not in light grown hypocotyls. The results show that a large range of possible hypocotyl lengths is achieved via dose-dependent GA-regulated alterations in the degree of elongation of individual hypocotyl cells.Key words: Arabidopsis, cell elongation, gibberellin (GA), GA mutants, hypocotyl.   相似文献   

8.
Arabidopsis, like most plants, exhibits tissue-specific, light-dependent growth responses. Cotyledon and leaf growth and the accumulation of photosynthetic pigments are promoted by light, whereas hypocotyl growth is inhibited. The identification and characterization of distinct phytochrome-dependent molecular effectors that are associated with these divergent tissue-specific, light-dependent growth responses are limited. To identify phytochrome-dependent factors that impact the photoregulation of hypocotyl length, we conducted comparative gene expression studies using Arabidopsis lines exhibiting distinct patterns of phytochrome chromophore inactivation and associated disparate hypocotyl elongation responses under far-red (FR) light. A large number of genes was misregulated in plants lacking mesophyll-specific phytochromes relative to constitutively-deficient phytochrome lines. We identified and characterized genes whose expression is impacted by light and by phyA and phyB that have roles in the photoregulation of hypocotyl length. We characterized the functions of several identified target genes by phenotyping of T-DNA mutants. Among these genes is a previously uncharacterized LHE (LIGHT-INDUCED HYPOCOTYL ELONGATION) gene, which we show impacts light- and phytochrome-mediated regulation of hypocotyl elongation under red (R) and FR illumination. We describe a new approach for identifying genes involved in light- and phytochrome-dependent, tissue-specific growth regulation and confirmed the roles of three such genes in the phytochrome-dependent photoregulation of hypocotyl length.  相似文献   

9.
10.
11.
Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to each.  相似文献   

12.
13.
14.
The process of importing nuclear encoded proteins into chloroplasts is mediated by the T ranslocons on the O uter/I nner Envelope of C hloroplasts (TOC and TIC complex). The ancestor of the TOC complex was formed by pre‐existing proteins from the cyanobacterial ancestor; other proteins recruited from the host cell or cyanobacterial ancestor were subsequently integrated into the complex. However, little is known about the origin of the TIC complex. In this work, the origin of the TIC complex was investigated through one of its channel proteins, AtTic21. Phylogenetic analysis suggested that AtTic21 is conserved in photosynthetic organisms. AtTic21 showed 33% sequence identity to a Synechocystis protein SynTic21. The successful genetic complementation of an AtTic21 knockout mutant by SynTic21 plus the transit peptide coding sequence of AtTic21 suggested that SynTic21 is an ortholog of AtTic21. The sequence and functional conservation between SynTic21 and AtTic21 suggested that the TIC complex shares a similar evolutionary origin to the TOC complex.  相似文献   

15.
A central problem in plant biology is how cell expansion is coordinated with wall synthesis. We have studied growth and wall deposition in epidermal cells of dark-grown Arabidopsis hypocotyls. Cells elongated in a biphasic pattern, slowly first and rapidly thereafter. The growth acceleration was initiated at the hypocotyl base and propagated acropetally. Using transmission and scanning electron microscopy, we analyzed walls in slowly and rapidly growing cells in 4-d-old dark-grown seedlings. We observed thick walls in slowly growing cells and thin walls in rapidly growing cells, which indicates that the rate of cell wall synthesis was not coupled to the cell elongation rate. The thick walls showed a polylamellated architecture, whereas polysaccharides in thin walls were axially oriented. Interestingly, innermost cellulose microfibrils were transversely oriented in both slowly and rapidly growing cells. This suggested that transversely deposited microfibrils reoriented in deeper layers of the expanding wall. No growth acceleration, only slow growth, was observed in the cellulose synthase mutant cesA6(prc1-1) or in seedlings, which had been treated with the cellulose synthesis inhibitor isoxaben. In these seedlings, innermost microfibrils were transversely oriented and not randomized as has been reported for other cellulose-deficient mutants or following treatment with dichlorobenzonitrile. Interestingly, isoxaben treatment after the initiation of the growth acceleration in the hypocotyl did not affect subsequent cell elongation. Together, these results show that rapid cell elongation, which involves extensive remodeling of the cell wall polymer network, depends on normal cellulose deposition during the slow growth phase.  相似文献   

16.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

17.
Glycerophosphorylcholine (GPC), sorbitol and inositol were quantitated in renal tubule suspensions from inner and outer medulla of untreated Sprague-Dawley rats to study the regulation of organic osmolyte concentrations under different metabolic conditions and varying extracellular osmolalities in vitro. Inner medullary tubules prepared in hypertonic saline (550 mosm/kg) contained osmolyte concentrations comparable to those found in the kidney in vivo. Incubation for up to 8 h at 5 mmol/l glucose increased sorbitol in the inner medullary tubules and medium in an osmolality-dependent fashion, whereas GPC and inositol remained constant. At a given glucose concentration the rate of sorbitol formation decreased linearly with increasing tubular sorbitol concentration, which was regulated by an osmolality-dependent export mechanism. Perturbation of tubular mechanisms by inhibition of glycolysis or oxidative phosphorylation did not change the tubular osmolyte content. In contrast to papilla outer medullary tubules contained only inositol. Lactate added as a metabolic substrate to the outer medullary tubules did not change the cellular inositol levels. In outer medullary tubules osmolality changes (320-710 mosm/kg) had no effect on tubular inositol. Addition of furosemide was without effect, when added in vitro. The results indicate that tubular sorbitol formation is regulated by glucose concentration, the level of tubular sorbitol, and an osmolality-dependent export mechanism. In contrast, cellular inositol and GPC levels seem to be independent of acute changes in tubular metabolism.  相似文献   

18.
In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination.Key words: arabidopsis, epidermis, CPC, stomata, TMM  相似文献   

19.
Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the FLAVIN-BINDING KELCH REPEAT F-BOX 1 / LOV KELCH PROTEIN 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.  相似文献   

20.
Summary The antibiotic fungal toxin brefeldin A (BFA) causes synthesis of additional cell wall material in adult differentiated onion inner epidermal cells at concentrations of 5–30 g/ml. This tertiary wall contains callose and is layered on the secondary cellulosic wall in a time- and dose-dependent manner. Initially, callose is found in pit fields in the form of small vesicular patches. With time and dose, depositions grow in size and form large plugs invaginating into the cell, where the adjacent cytoplasm forms bulky accumulations and contains many organelles including endomembranes. Within the cytoplasm, BFA exerts the characteristic morphological effects on the secretory system including changes of the Golgi stacks, formation of large vesicles, and proliferation of dilated cisternae of the endoplasmic reticulum. Higher concentrations of BFA (60 g/ml) lead to disintegration of the Golgi apparatus; they have no effects on the cell wall, no callose synthesis occurs. We conclude from these observations that BFA has two independent targets in onion cells. BFA acts on the plasma membrane, hence operating as an elicitor of plant defense reactions and thus activates callose synthesis. BFA acts also on the membranes of the secretory system and influences budding and fusion of vesicles at the endoplasmic reticulum and at the dictyosomes. These two mechanisms occur in parallel, suggesting that the secretory system still can play its presumed role in callose synthesis. Only when dictyosomes are completely disintegrated, no more callose is formed.Abbreviations BFA Brefeldin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum - GS glucan synthetase Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号