首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Group 1B phospholipase A2 (PLA2) is an abundant lipolytic enzyme that is well characterized biochemically and structurally. Because of its high level of expression in the pancreas, it has been presumed that PLA2 plays a role in the digestion of dietary lipids, but in vivo data have been lacking to support this theory. Our initial study on mice lacking PLA2 demonstrated no abnormalities in dietary lipid absorption in mice consuming a chow diet. However, the effects of PLA2 deficiency on animals consuming a high-fat diet have not been studied. To investigate this, PLA2(+/+) and PLA2(-/-) mice were fed a western diet for 16 wk. The results showed that PLA2(-/-) mice were resistant to high-fat diet-induced obesity. This observed weight difference was due to decreased adiposity present in the PLA2(-/-) mice. Compared with PLA2(+/+) mice, the PLA2(-/-) mice had 60% lower plasma insulin and 72% lower plasma leptin levels after high-fat diet feeding. The PLA2(-/-) mice also did not exhibit impaired glucose tolerance associated with the development of obesity-related insulin resistance as observed in the PLA2(+/+) mice. To investigate the mechanism by which PLA(2)(-/-) mice exhibit decreased weight gain while on a high-fat diet, fat absorption studies were performed. The PLA(2)(-/-) mice displayed 50 and 35% decreased plasma [(3)H]triglyceride concentrations 4 and 6 h, respectively, after feeding on a lipid-rich meal containing [(3)H]triolein. The PLA(2)(-/-) mice also displayed increased lipid content in the stool, thus indicating decreased fat absorption in these animals. These results suggest a novel role for PLA(2) in the protection against diet-induced obesity and obesity-related insulin resistance, thereby offering a new target for treatment of obesity and diabetes.  相似文献   

2.
Insulin resistance and impaired glucose homoeostasis are important indicators of Type?2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes.  相似文献   

3.
Cbl-associated protein (Cap) is a member of a phosphatidylinositol 3-kinase-independent pathway for insulin-stimulated translocation of the glucose transporter GLUT4. Despite this positive role of Cap in glucose uptake, here we show that deletion of the gene encoding Cap (official gene name: Sorbs1) protects against high-fat diet (HFD)-induced insulin resistance in mice while also having an opposite, insulin-sensitizing effect, accompanied by reduced tissue markers of inflammation. Given the emerging role of chronic inflammation in insulin resistance and the macrophage in initiating this inflammatory process, we considered that Sorbs1 deletion from macrophages may have resulted in the observed protection from HFD-induced insulin resistance. Using bone marrow transplantation to generate functional Sorbs1-null macrophages, we show that the insulin-sensitive phenotype can be transferred to wild-type mice by transplantation of Sorbs1-null bone marrow. These studies show that macrophages are an important cell type in the induction of insulin resistance and that Cap has a modulatory role in this function.  相似文献   

4.
5.
6.
Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.  相似文献   

7.
He M  Su H  Gao W  Johansson SM  Liu Q  Wu X  Liao J  Young AA  Bartfai T  Wang MW 《PloS one》2010,5(12):e14205

Background

Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance.

Methodology/Principal Findings

DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment.

Conclusions/Significance

Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism.  相似文献   

8.
Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.  相似文献   

9.
The emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1−/− mice). Enpp1−/− mice exhibited mildly improved glucose homeostasis on a normal diet but showed a pronounced resistance to obesity and insulin resistance in response to chronic high-fat feeding. Enpp1−/− mice had increased levels of the insulin-sensitizing bone-derived hormone osteocalcin but unchanged insulin signalling within osteoblasts. A fuller understanding of the pathways of NPP1 could inform the development of novel therapeutic strategies for treating insulin resistance.KEY WORDS: NPP1, Mineralization, Obesity, Diabetes  相似文献   

10.
Insulin signaling in adipose tissue plays an important role in lipid storage and regulation of glucose homeostasis. Using the Cre-loxP system, we created mice with fat-specific disruption of the insulin receptor gene (FIRKO mice). These mice have low fat mass, loss of the normal relationship between plasma leptin and body weight, and are protected against age-related and hypothalamic lesion-induced obesity, and obesity-related glucose intolerance. FIRKO mice also exhibit polarization of adipocytes into populations of large and small cells, which differ in expression of fatty acid synthase, C/EBP alpha, and SREBP-1. Thus, insulin signaling in adipocytes is critical for development of obesity and its associated metabolic abnormalities, and abrogation of insulin signaling in fat unmasks a heterogeneity in adipocyte response in terms of gene expression and triglyceride storage.  相似文献   

11.
12.
Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have antitumor and anti-inflammatory effects. However, little is known about the effects of NOB on obesity and insulin resistance. In this study, we examined the effects of NOB on obesity and insulin resistance, and the underlying mechanisms, in high-fat diet (HFD)-induced obese mice. Obese mice were fed a HFD for 8 weeks and then treated without (HFD control group) or with NOB at 10 or 100 mg/kg. NOB decreased body weight gain, white adipose tissue (WAT) weight and plasma triglyceride. Plasma glucose levels tended to decrease compared with the HFD group and improved plasma adiponectin levels and glucose tolerance. Furthermore, NOB altered the expression levels of several lipid metabolism-related and adipokine genes. NOB increased the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, PPAR-α, carnitine palmitoyltransferase-1, uncoupling protein-2 and adiponectin, and decreased the mRNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1 in WAT. NOB also up-regulated glucose transporter-4 protein expression and Akt phosphorylation and suppressed IκBα degradation in WAT. Taken together, these results suggest that NOB improves adiposity, dyslipidemia, hyperglycemia and insulin resistance. These effects may be elicited by regulating the expression of lipid metabolism-related and adipokine genes, and by regulating the expression of inflammatory makers and activity of the insulin signaling pathway.  相似文献   

13.
Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation.  相似文献   

14.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

15.
Obese subjects of all ages and sex have reduced plasma SHBG levels. Whether these low plasma SHBG levels play a role in obesity development is unknown. In the present work we wanted to explore if SHBG overexpression could prevent obesity development induced by high fat diet (HFD). To do so, we fed humanized SHBG transgenic male mice and their wild-type littermates with control diet (CD) or HFD over the course of 8 weeks. The results showed that SHBG overexpression protected against body weight gain and fat accumulation induced by HFD. In addition, SHBG overexpression also abrogated the increase in insulin, leptin and resistin levels, as well as the reduction in adiponectin, induced by HFD. Mechanistically, the SHBG protection against HFD-induced obesity was achieved by stimulating lipolysis in white adipose tissue. Furthermore, we have demonstrated the SHBG cell-autonomous effect using human primary visceral adipocytes. Taking together, our results demonstrate that SHBG overexpression protects against diet-induced obesity and improves the metabolic profile of male mice fed a HFD diet.  相似文献   

16.
Obesity is commonly associated with development of insulin resistance and systemic evidence of inflammation. Macrophages contribute to inflammatory amplification in obesity and may contribute directly to insulin resistance and the development of nonalcoholic fatty liver disease through the production of inflammatory cytokines, including tumor necrosis factor (TNF)-alpha. To test this hypothesis, we transplanted male wild-type (WT) and TNF-alpha deficient (KO) mice with either TNF-alpha-sufficient (TNF-alpha(+/+)) or TNF-alpha-deficient (TNF-alpha(-/-)) bone marrow. After consuming a high-fat diet for 26 wk, metabolic and morphometric characteristics of the animals were analyzed. While there were no differences in terms of relative weight gain, body composition analysis yielded a lower relative adipose and higher relative lean mass in mice lacking TNF-alpha, which was partially explained by reduced epididymal fat pad and liver weight. TNF-alpha(-/-) -->KO mice exhibited enhanced insulin sensitivity compared with that observed in TNF-alpha(+/+)-->KO mice; remarkably, no protection against insulin resistance was provided by transplanting TNF-alpha(-/-) bone marrow in WT mice compared with TNF-alpha(+/+)-->WT. The preserved insulin sensitivity seen in TNF-alpha(-/-)-->KO mice provided protection against the development of hepatic steatosis. Taken together, these data indicate that macrophage-derived TNF-alpha contributes to the pattern and extent of fat accumulation and insulin resistance in diet-induced obesity; however, this contribution is negligible in the presence of host-derived TNF-alpha.  相似文献   

17.
To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.  相似文献   

18.
Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation.  相似文献   

19.
Roux-en-y gastric bypass (RYGB) surgery rapidly improves glucose tolerance and reverses insulin resistance in obese patients. It has been hypothesized that this effect is mediated by the diversion of nutrients from the proximal small intestine. We utilized duodenal-jejunal bypass (DJB) as a modification of gastric bypass to determine the effect of nutrient diversion from the foregut without gastric restriction on insulin resistance in obese rats. The effects of DJB or Sham surgery on glucose homeostasis were determined in both high-fat-fed Long-Evans and Wistar rats. Body weight and food intake were measured weekly postoperatively, and body composition was monitored before and after surgery. Glucose tolerance was tested before and as early as 1 month postoperation; additionally, in Wistar rats, insulin sensitivity was determined by a hyperinsulinemic-euglycemic clamp (HIEC). DJB did not affect body weight, body composition, glucose tolerance, or insulin concentrations over the period of the study. The average glucose infusion rate (GIR) during the HIEC was 6.2 ± 1.16 mg/kg/min for Sham rats compared to 7.2 ± 1.71 mg/kg/min for DJB rats (P = 0.62), and neither endogenous glucose production (EGP; P = 0.81) nor glucose utilization (glucose disappearance (R(d)), P = 0.59) differed between DJB and Sham rats. DJB does not affect insulin resistance induced by a high-fat diet in Long-Evans and Wistar rats. These data suggest that duodenal bypass alone is an insufficient mechanism to alter insulin sensitivity independent of weight loss in obese, nondiabetic rodents.  相似文献   

20.
Obesity-associated hepatic steatosis is a manifestation of selective insulin resistance whereby lipogenesis remains sensitive to insulin but the ability of insulin to suppress glucose production is impaired. We created a mouse model of liver-specific knockdown of p70 S6 kinase (S6K) (L-S6K-KD) by systemic delivery of an adeno-associated virus carrying a shRNA for S6K and examined the effects on steatosis and insulin resistance. High fat diet (HFD) fed L-S6K-KD mice showed improved glucose tolerance and systemic insulin sensitivity compared with controls, with no changes in food intake or body weight. The induction of lipogenic gene expression was attenuated in the L-S6K-KD mice with decreased sterol regulatory element-binding protein (SREBP)-1c expression and mature SREBP-1c protein, as well as decreased steatosis on HFD. Our results demonstrate the importance of S6K: 1) as a modulator of the hepatic response to fasting/refeeding, 2) in the development of steatosis, and 3) as a key node in selective hepatic insulin resistance in obese mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号