首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Leptospirosis is caused by Leptospira, gram negative spirochaetes whose microbiologic identification is difficult due to their low rate of growth and metabolic activity. In Colombia leptospirosis diagnosis is achieved by serological techniques without unified criteria for what positive titers are. In this study we compared polymerase chain reaction (PCR) with microbiological culture and dark field microscopy for the diagnosis of leptospirosis. Microbiological and molecular techniques were performed on 83 samples of urine taken from bovines in the savannahs surrounding Bogotá in Colombia, with presumptive diagnosis of leptospirosis. 117 samples of urine taken from healthy bovines were used as negative controls. 83 samples were MAT positive with titers ≥ 1:50; 81 with titers ≥ 1:100; and 66 with titers ≥ 1:200. 36% of the total samples (73/200) were Leptospira positives by microbiological culture, 32% (63/200) by dark field microscopy and 37% (74/200) by PCR. Amplicons obtained by PCR were 482 base pair long which are Leptospira specific. An amplicon of 262 base pairs typical of pathogenic Leptospira was observed in 71 out of the 74 PCR positive samples. The remaining 3 samples showed a 240 base pair amplicon which is typical of saprophytic Leptospira. PCR as a Leptospira diagnosis technique was 100% sensitive and 99% specific in comparison to microbiological culture. Kappa value of 0.99 indicated an excellent concordance between these techniques. Sensitivity and specificity reported for MAT when compared to microbiological culture was 0.95 and 0.89 with a ≥ 1:50 cut off. PCR was a reliable method for the rapid and precise diagnosis of leptospirosis when compared to traditional techniques in our study. The research presented here will be helpful to improve diagnosis and control of leptospirosis in Colombia and other endemic countries.  相似文献   

5.
6.
Phylogenetic analyses carried out on cytochrome c oxidase (COX) subunit I mitochondrial genes from 14 primates representing the major branches of the order and four outgroup nonprimate eutherians revealed that transversions and amino acid replacements (i.e., the more slowly occurring sequence changes) contained lower levels of homoplasy and thus provided more accurate information on cladistic relationships than transitions (i.e., the more rapidly occurring sequence changes). Several amino acids, each with a high likelihood of functionality involving the binding of cytochrome c or interaction with COX VIII, have changed in Anthropoidea, the primate suborder grouping New World monkey, Old World monkey, ape, and human lineages. They are conserved in other mammalian lineages and in nonanthropoid primates. Maximum-likelihood ancestral COX I nucleotide sequences were determined utilizing a near most parsimonious branching arrangement for the primate sequences that was consistent with previously hypothesized primate cladistic relationships based on larger and more diverse data sets. Relative rate tests of COX I mitochondrial sequences showed an elevated nonsynonymous (N) substitution rate for anthropoid-nonanthropoid comparisons. This finding for the largest mitochondrial (mt) DNA-encoded subunit is consistent with previous observations of elevated nonsynonymous substitution/synonymous substitution (S) rates in primates for mt-encoded COX II and for the nuclear-encoded COX IV and COX VIIa-H. Other COX-related proteins, including cytochrome c and cytochrome b, also show elevated amino acid replacement rates or N/S during similar time frames, suggesting that this group of interacting genes is likely to have coevolved during primate evolution.  相似文献   

7.
A new study of genetic variation in the human prion protein gene suggests that balancing selection has operated on an amino acid sequence polymorphism in the gene during the last five hundred thousand years. Is this a legacy of widespread cannibalism by our ancestors?  相似文献   

8.
While lateral transfer is the rule in the evolutionary history of bacterial and archaeal genes, events of transfer from prokaryotes to eukaryotes are rare. Germline-transmitted animal symbionts, such as Wolbachia pipientis, are well placed to participate in such transfers. In a recent issue of Science, Dunning Hotopp et al. identified instances of transfer of Wolbachia DNA to host genomes. It is unknown whether these transfers represent innovation in animal evolution.  相似文献   

9.
10.
In a given area, plant-animal mutualistic interactions form complex networks that often display nestedness, a particular type of asymmetry in interactions. Simple ecological and evolutionary factors have been hypothesized to lead to nested networks. Therefore, nestedness is expected to occur in other types of mutualisms as well. We tested the above prediction with the network structure of interactions in cleaning symbiosis at three reef assemblages. In this type of interaction, shrimps and fishes forage on ectoparasites and injured tissues from the body surface of fish species. Cleaning networks show strong patterns of nestedness. In fact, after controlling for species richness, cleaning networks are even more nested than plant-animal mutualisms. Our results support the notion that mutualisms evolve to a predictable community-level structure, be it in terrestrial or marine communities.  相似文献   

11.
Harold Erickson has recently provided a useful analysis of helical structures having one class versus two classes of intersubunit bonds. His analysis is based upon an assumption that the subunits themselves are essentially unchanged upon bond formation (polymerization). He shows that such a structure having two classes of bonds (i.e. one in which each subunit interacts with four of its neighbors rather than two) can explain some of the features of actin. While he acknowledges that for actin there could be a conformational change and that, in principle, it could explain such features, he argues that the allowed magnitude of such a conformational change is inadequate. Since kinetics and thermodynamics cannot distinguish between the energy derived from the formation of a bond from that due to a conformational change, the question of whether the features of F-actin are derived from a conformational change or a system of two classes of bonds or both must be answered with high-resolution structural information. Recent studies by K. C. Holmes and others suggest that the second possibility might be closest to the truth. The heart of our disagreement is not whether Erickson's thermodynamic analysis is correct, given rigid subunits, but whether all protein polymers are characterized by rigid subunits with rigid intersubunit contacts. Erickson maintains that the observation of an angular disorder of 12 degrees per subunit within the actin filament conflicts with his formalism of rigid subunit interfaces and must therefore result from the erroneous interpretation of measurements. He presents an alternative model to explain the observations. His model, however, does not account for the observations and we will argue that, ultimately, like the resolution of the matter of the number of classes of bonds and the extent of their contact, the amount of angular disorder will require higher-resolution structural studies.  相似文献   

12.
As more and more complete bacterial and archaeal genome sequences become available, the role of lateral gene transfer (LGT) in shaping them becomes more and more clear. Over the long term, it may be the dominant force, affecting most genes in most prokaryotes. We review the history of LGT, suggesting reasons why its prevalence and impact were so long dismissed. We discuss various methods purporting to measure the extent of LGT, and evidence for and against the notion that there is a core of never-exchanged genes shared by all genomes, from which we can deduce the "true" organismal tree. We also consider evidence for, and implications of, LGT between prokaryotes and phagocytic eukaryotes.  相似文献   

13.
《BBA》2020,1861(11):148275
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.  相似文献   

14.
Evolutionary trends in the evolution of host specificity have been the focus of much discussion but little rigorous empirical testing. On the one hand, specialization is often presumed to lead irreversibly into evolutionary dead ends and little diversification; this would mean that generalists might evolve into specialists, but not vice versa. On the other hand, low host specificity may limit the risk of extinction and provide more immediate fitness benefits to parasites, such that selection may favour evolution toward a generalist strategy. Here, we test for directionality in the evolution of host specificity using a large data set and phylogenetic information on 297 species of fleas parasitic on small mammals. The analyses determined whether host specificity, measured both as the number of host species exploited and their taxonomic diversity, was related to clade rank of the flea species, or the number of branching events between an extant species and the root of the phylogenetic tree (i.e., the total path length from the root of the tree to the species). Based on regression analyses, we found positive relationships between the number of host species used and clade rank across all 297 species, as well as within one (Hystrichopsyllidae) of four large families and one of seven large genera investigated separately; in addition, we found a positive relationship between the taxonomic diversity of host species used and clade rank in another of the seven genera. These results suggest a slight evolutionary trend of decreasing host specificity. Using a much more conservative likelihood ratio test, however, a random walk, or null model, of evolution could not be discarded in favour of the directional trends in all cases mentioned above. Still, these results suggest that host specificity may have tended to decrease in many flea lineages, a process that could have been driven by the benefits of exploiting a wide range of host species.  相似文献   

15.
In the 'omic' era, hundreds of genomes are available for protein sequence analysis, and some 30 per cent of all sequences are of membrane proteins. Unlike globular proteins, a 3D model for membrane proteins can hardly be computed starting from the sequence. Why is this so? What can we really compute and with what reliability? These and other matters are outlined.  相似文献   

16.
17.
18.
Estrogens have preventative effects on weight gain and associated comorbidities, but the tissue-specific targets remain unknown. Here, Xu et al. (2011) demonstrate that ablation of estrogen signaling in two populations of hypothalamic neurons leads to weight gain and subsequent metabolic dysregulation and could be important target sites of estrogen actions.  相似文献   

19.
Extrachromosomal circular DNA (eccDNA) can shape the genomes of somatic cells, but how it impacts genomes across generations is largely unexplored. We propose that genomes can rearrange via circular intermediates across generations and show that up to 6% of a mammalian genome can have changed gene order through eccDNA.  相似文献   

20.
Human olfactory receptor, hOR17-210, is identified as a pseudogene in the human genome. Experimental data has shown however, that the gene product of frame-shifted, cloned hOR17-210 cDNA was able to bind an odorant-binding protein and is narrowly tuned for excitation by cyclic ketones. Supported by experimental results, we used the bioinformatics methods of sequence analysis (genome-wide and pair-wise), computational protein modeling and docking, to show that functionality in this receptor is retained due to sequence-structure features not previously observed in mammalian ORs. This receptor does not possess the first two transmembrane helical domains (of seven typically seen in GPCRs). It however, possesses an additional TM that has not been observed in other human olfactory receptors. By incorporating these novel structural features, we created two putative models for this receptor. We also docked odor ligands that were experimentally shown to bind hOR17-210. We show how and why structural modifications of OR17-210 do not hinder this receptor's functionality. Our studies reveal that novel gene rearrangements that result in sequence and structural diversity may have a bearing on OR and GPCR function and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号