首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Three-dimensional structure of the yeast ribosome.   总被引:4,自引:0,他引:4       下载免费PDF全文
The 80S ribosome from Saccharomyces cerevisiae has been reconstructed from cryo electron micrographs to a resolution of 35 A. It is strikingly similar to the 70S ribosome from Escherichia coli, while displaying the characteristic eukaryotic features familiar from reconstructions of ribosomes from higher eukaryotes. Aside from the elaboration of a number of peripherally located features on the two subunits and greater overall size, the largest difference between the yeast and E.coli ribosomes is in a mass increase on one side of the large (60S) subunit. It thus appears more elliptical than the characteristically globular 50S subunit from E.coli. The interior of the 60S subunit reveals a variable diameter tunnel spanning the subunit between the interface canyon and a site on the lower back of the subunit, presumably the exit site through which the nascent polypeptide chain emerges from the ribosome.  相似文献   

2.
L Gorelic  S A Shain 《Biochemistry》1982,21(10):2344-2348
Irradiation of aqueous buffered solutions of Escherichia coli 30S ribosomes with doses of 254-nm radiation greater than 10(19) quanta causes formation of uridine 5'-phosphate (UMP) photohydrates in ribosomal 16S RNA (rRNA). The number of molecules of UMP photohydrate formed at doses less than 2 x 10(20) quanta is linearly dependent on dose of absorbed 254-nm radiation. Maximum UMP photohydrate formation is dependent on initial ribosome concentration. When solutions containing 1 A260 unit of 30S ribosomes/mL were irradiated with greater than 2 x 10(20) quanta of 254-nm radiation, maximum photohydrate formation was equal to 47 residues/ribosome. Irradiation of solutions containing 2 A260 units/mL with greater than 7 x 10(20) quanta caused formation of 102 UMP photohydrates/ribosome. These values correspond to conversion of either 15 or 33%, respectively, of the total UMP content of 30S ribosome 16S rRNA to photohydrates. Target theory analysis of UMP photohydration in 30S ribosomes showed that UMP photohydrates are formed by single-hit kinetics from two photochemically distinct precursors. Of the total 16S rRNA UMP residues, 10% was included in the most rapidly (low dose) reacting fraction. The respective photohydration cross sections are 0.014 (low dose) and 0.0095 cm2/muEinstein (high dose) for ribosome solutions containing 2 A260 units/mL. UMP photohydrate content of irradiated 30S ribosomes was compared with that of previous data for the extent of RNA-protein cross-linking at equivalent doses of absorbed 254-nm radiation. This comparison showed that at least two UMP photohydrates form per RNA-protein cross-linking event in 30S ribosomes irradiated with a dose of 254-nm radiation (1.5 x 10(19) quanta), which causes cross-linking of only three ribosomal proteins to 16S rRNA.  相似文献   

3.
The in vitro translation capacity of total ribosome assemblies isolated from the vegetative buds of small Scots pine (Pinus sylvestris L.) plants depends on the isolation procedure. Good yields and high values for protein synthesis were obtained in experiments in which polyvinyl pyrrolidone (PVP) was added to the grinding buffer. The polysome profiles obtained after sucrose density gradient centrifugation indicated the presence of polysomes in all samples. In addition, large ribosome aggregates were visible in the scanning electron micrographs. The use of an RNase inhibitor (RNasin) together with PVP did not improve the results, and treatment with ribonuclease (RNase, EC 3.1.27.5) destroyed the ability to synthesize protein. D, L-Dithiothreitol (DTT) and mercaptoethanol, if used instead of or together with PVP, gave low yields and also DTT destroyed the in vitro translation capacity of the ribosome assemblies. The polysome profiles had a high peak indicating dimers and often a descending series of peaks indicating polymers. A study of the scanning electron micrographs gave the impression that the largest polymers and aggregates had broken down. Protease K (EC 3.4.21.14) when added to the grinding buffer also destroyed the ability of the ribosomes to maintain protein synthesis in vitro. In this case, the shape of the polysome profiles gave the impression of successful isolation. Clumps of ribosomes, presumably originating from large aggregates, were visible in the scanning electron micrographs. Triton X-100 and 0.25 M NaCl in the grinding buffer extracted chromatin, which affected the results. The material lost during the extraction and purification processes consisted mainly of monosomes and their sub-units. On the basis of the above results it was concluded that the preservation of large polysomes and ribosome aggregates in the isolated ribosome assemblies is necessary if they are to maintain a high translation capacity. The content of the assemblies was best revealed in the scanning electron micrographs. The shape of the polysome profiles did not always correlate with the ability of the isolated ribosomes to synthesize proteins.  相似文献   

4.
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data.Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.  相似文献   

5.
In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress‐induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation‐promoting factor (SaHPF) that we solved using cryo‐electron microscopy. Our reconstructions reveal that the N‐terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C‐terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD‐dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA. We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.  相似文献   

6.
ALTERATIONS IN POLYRIBOSOMES DURING ERYTHROID CELL MATURATION   总被引:18,自引:7,他引:11       下载免费PDF全文
This communication presents a morphological study of the changes in ribosome content and organization which occur during the maturation of erythroid cells of the phenylhydrazine-treated rabbit. Electron micrographs of thin sectioned nucleated and non-nucleated erythroid cells have been subjected to a quantitative analysis of the distribution of ribosomes as polyribosomes of various sizes and as single ribosomes. The ribosomes of nucleated erythroid cells of marrow are virtually all arranged in the polyribosome configuration consisting of clusters of 2 to 6 individual ribosomes. These cells are the most active in the erythroid series in protein biosynthesis. During maturation to the non-nucleated reticulocyte stage, found in the circulating blood, there is a decrease in protein synthesizing capacity, a fall in total ribosome content, and, more significantly, a decrease in the number and size of polyribosomes. Maturation to the ribosome-free erythrocyte, either under in vitro or in vivo conditions, entails a further decrease in protein synthesis which correlates with a progressive disaggregation of the biosynthetically active polyribosomes into smaller clusters and inactive single ribosomes. Possible models which may account for the stability of the polyribosome and for the mechanism of polyribosome dissociation are discussed.  相似文献   

7.
Three independently isolated mutants of Escherichia coli which apparently lacked protein L19 on their ribosomes, as judged by two-dimensional gels, were analyzed by a range of immunological tests to determine if the protein was indeed lacking. In two of the three, all the tests indicated that protein L19 was absent from both ribosome and supernatant. In the third, a drastically altered form of protein L19 was present on the ribosome. Electron micrographs of ribosomes obtained from the mutants were indistinguishable from those of wild type strains. The location of ribosomal protein L19 on the surface of the large subunit was determined. It was situated at the base of the 50 S particle facing the small subunit, on the side where the rod like appendage originates.  相似文献   

8.
A dynamic model for the structure of ribosomes is developed using X-ray small-angle scattering data and electron micrographs of ribosomes and polysomes. The large subunit has the shape of a conical frustum, and has a groove at its flat side. The small subunit consists of two semiparticles which are connected by a molecular strand; it may assume two conformations: a prolate P conformation and an oblate O conformation. Translocation of the ribosome along the mRNA in the elongation process of protein synthesis is accomplished by cyclic conformation transitions P-O-P-O in combination with the linking and rupturing of bonds. This mechanism is called "rack and roll" mechanism.  相似文献   

9.
Free ribosomes extracted from hamster cells and 28S RNA purified from these ribosomes are known to form dimers. We find that spleen phosphodiesterase inhibits ribosomal dimer formation, but only when a free 5′-hydroxyl end group, produced by the action of alkaline phosphatase, is present. Hence, formation of dimer ribosomes probably involves interaction at or near the phosphorylated 5′-ends of 28S RNA. Dimer RNA molecules show a modal length, when measured on electron micrographs, of 2.1μm, which is about double the length of 28S RNA. Electron micrographs of 115S dimer ribosomes often show profiles consistent with our interpretation that in dimers the 28S RNA chains are loosely linked by their 5′-ends.  相似文献   

10.
During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.  相似文献   

11.
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.  相似文献   

12.
Three-dimensional reconstruction of mammalian 40 S ribosomal subunit   总被引:1,自引:0,他引:1  
The small (40 S) subunit from rabbit reticulocyte ribosomes has been reconstructed from electron micrographs of a negatively stained single-particle specimen to a resolution of 3.85 nm. The reconstruction reveals a morphology consisting of a broad wedge-shaped head structure set atop a quasi-cylindrical body. Distinctive features recognized in two-dimensional projections, such as the beak, back lobes, and feet, can now be localized in three dimensions. By reference to a recent reconstruction of the monomeric 80 S ribosome we can identify the interface and exterior surfaces of the subunit, thus enabling more detailed functional interpretations.  相似文献   

13.
14.
Hydrogen bonding between the 3' terminus of 16 S rRNA (... C-A-C-C-U-C-C-U-U-A-OH3) and complementary sequences within the initiator region of mRNA may be a crucial event in the specific initiation of protein biosynthesis (Shine, J., and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1342-1346; Steitz, J. A., and Jakes, K. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 4734-4738). Using equilibrium dialysis, we have studied the binding of G-A-dG-dG-U (which is complementary to the 3' end of 16 S rRNA and which has been synthesized enzymatically) to initiation factor-free Escherichia coli ribosomes. We have also investigated the effects of the pentanucleotide on initiation reactions in E. coli ribosomes. G-A-dG-dG-U has a specific binding site on the 30 S ribosome with an association constant of 2 x 10(6) M-1 at 0 degrees C. G-A-dG-dG-U inhibits the R17 mRNA-dependent binding of fMet-tRNA by about 70%, both with 70 S ribosomes and 30 S subunits. In contrast, the A-U-G-dependent initiation reaction and the poly(U)-dependent Phe-tRNA binding was not affected by the pentanucleotide with both ribosomal species.  相似文献   

15.
Three-dimensional structure of the mammalian cytoplasmic ribosome   总被引:3,自引:0,他引:3  
A three-dimensional reconstruction of the 80 S ribosome from rabbit reticulocytes has been calculated from low-dose electron micrographs of a negatively stained single-particle specimen. At 37 A resolution, the precise orientations of the 40 S and 60 S subunits within the monosome can be discerned. The translational domain centered on the upper portion of the subunit/subunit interface is quite open, allowing considerable space between the subunits for interactions with the non-ribosomal macromolecules involved in protein synthesis. Further, the cytosolic side of the monosome is strikingly more open than the membrane-attachment side, suggesting a greater ease of communication with the cytoplasm, which would facilitate the inwards and outwards diffusion of a number of ligands. Although the 60 S subunit portion of the 80 S structure shows essentially all of the major morphological features identified for the eubacterial 50 S large subunit, it appears to possess a region of additional mass that evidently accounts for the more ellipsoidal form of the eukaryotic subunit.  相似文献   

16.
《Biophysical journal》2022,121(23):4443-4451
Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.  相似文献   

17.
Vitreous cryo-section-induced compression influences the interpretation and the reliability of electron microscopy images and tomographic reconstructions. Previous studies of this deformation have been focused at the cellular level where considerable compression occurs, yet the degree of possible intracellular macromolecular deformation has remained unclear. Here, electron cryo-tomographic reconstructions of vitreous cryo-sections show that 80S ribosomes, both intracellular and in an isolated state, appear able to resist section-induced compression. Our observations indicate that vitreous section-induced compression is non-uniform between whole cells that have been sectioned and their intracellular macromolecular complexes. We conclude that electron cryo-tomography of vitreous cryo-sections, in spite of section-induced compression, is a suitable technique for charting the structural organization of cellular nanomachines, such as ribosomes, in a cellular environment.  相似文献   

18.
One of the major methodological challenges in single particle electron microscopy is obtaining initial reconstructions which represent the structural heterogeneity of the dataset. Random Conical Tilt and Orthogonal Tilt Reconstruction techniques in combination with 3D alignment and classification can be used to obtain initial low-resolution reconstructions which represent the full range of structural heterogeneity of the dataset. In order to achieve statistical significance, however, a large number of 3D reconstructions, and, in turn, a large number of tilted image pairs are required. The extraction of single particle tilted image pairs from micrographs can be tedious and time-consuming, as it requires intensive user input even for semi-automated approaches. To overcome the bottleneck of manual selection of a large number of tilt pairs, we developed an algorithm for the correlation of single particle images from tilted image pairs in a fully automated and user-independent manner. The algorithm reliably correlates correct pairs even from noisy micrographs. We further demonstrate the applicability of the algorithm by using it to obtain initial references both from negative stain and unstained cryo datasets.  相似文献   

19.
Molecular dynamics simulation identified three highly conserved rRNA bases in the large subunit of the ribosome that form a three-dimensional (3D) "gate" that induces pausing of the aa-tRNA acceptor stem during accommodation into the A-site. A nearby fourth base contacting the "tryptophan finger" of yeast protein L3, which is involved in the coordinating elongation factor recruitment to the ribosome with peptidyltransfer, is also implicated in this process. To better understand the functional importance of these bases, single base substitutions as well as deletions at all four positions were constructed and expressed as the sole forms of ribosomes in yeast Saccharomyces cerevisiae. None of the mutants had strong effects on cell growth, translational fidelity, or on the interactions between ribosomes and tRNAs. However, the mutants did promote strong effects on cell growth in the presence of translational inhibitors, and differences in viability between yeast and Escherichia coli mutants at homologous positions suggest new targets for antibacterial therapeutics. Mutant ribosomes also promoted changes in 25S rRNA structure, all localized to the core of peptidyltransferase center (i.e., the proto-ribosome area). We suggest that a certain degree of structural plasticity is built into the ribosome, enabling it to ensure accurate translation of the genetic code while providing it with the flexibility to adapt and evolve.  相似文献   

20.
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号