首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
14C leucine incorporation into proteins by cerebral cortex subcellular fractions was studied after the administration of the convulsant 3-mercaptopropionic acid (MP). It was found that MP decreased protein synthesis by isolated nerve endings and mitochondria but not by microsomal fractions. It was also observed that mitochondrial ATPase was inhibited. These findings suggest that the inhibition of protein synthesis might be an indication of a disequilibrium of the normal energy-yielding metabolism.  相似文献   

2.
Glucose stimulated the rate of incorporation of [3H]leucine into HCLO4-insoluble fraction of cultured rat heart muscle cells under both aerobic and anaerobic conditions. In the aerobic system the incorporation proceeded at a constant rate during 3h of incubation with and without glucose whereas in the anaeorbic system the incorporation ceased after approx. 60 min and could be renewed only by the addition of glucose. No correlation was found to exist between the above effect of glucose on protein synthesis and glucose-dependent changes in the intracellular ATP concentration. The extent of the stimulation of protein synthesis was related to the concentration of glucose. The effect of glucose was suppressed by cycloheximide but was not affected by actinomycin D. Glucose had no effect on the rate of transport of alpha-aminoisobutyric acid. Mannose also stimulated [3H]leucine incorporation. Substances that did not produce lactate were ineffective. Iodoacetate inhibited the stimulatory effect of glucose, but pyruvate, which by itself had no apprecialbe stimulatory action, relieved the inhibition induced by iodoacetate. There was no concomitant change in the concentration of ATP when iodoacetate inhibition was reversed by pyruvate. L-Lactate or other intermediates of energy metabolism could not relieve the inhibitory effect of iodoacetate.  相似文献   

3.
Abstract— A newly described method for the isolation of morphologically intact neurons from newborn rat brain was used to study the influence of inhibitors and neuroactive substances on RNA and protein synthesis in these cells in vitro . Incorporation of [14C]-uridine into RNA and [3H]leucine into protein proceeded rapidly and continued up to 3 h. When the incorporation mixture was chased at 20 min with an excess of nonradioactive uridine and leucine, hardly any degradation of labelled RNA was noted during the following 2 h 40 min. In contrast, the specific radioactivity of proteins decreased by 22 per cent indicating turnover of cellular proteins.
Incorporation of labelled leucine into protein was markedly inhibited in the presence of NaF and cycloheximide but not affected in the presence of chloramphenicol or pancreatic RNase. A mixture of ATP + GTP depressed the incorporation by 38 per cent. The responses to ATP + GTP and RNase indicated that the incorporation system was typically cellular. Acetylcholine, γ-aminobutyrate, noradrenaline and phenylalanine in the incubation medium depressed the incorporation of labelled uridine into RNA by 10–30 per cent and 5-hydroxytryptamine by 75 per cent. Acetylcholine, γ-aminobutyrate and noradrenaline had no effect on protein synthesis, while 5-hydroxytryptamine and phenylalanine inhibited the incorporation by 60–80 per cent. Testosterone and prednisolone depressed both RNA and protein synthesis while thyroxine caused slight but non-significant stimulation.  相似文献   

4.
Optimal conditions for amino acid incorporation into protein in vitro by isolated skeletal muscle mitochondria were established. Maximum incorporation rates were obtained when atractylate and glutamate were added to the incubation medium in the absence of any exogenous adenine nucleotides. Under these conditions, the rate of amino acid incorporation was more than 5-fold greater than that observed with glutamate and ADP and nearly 12-fold greater than that observed with ATP and an ATP-regenerating system consisting of phosphoenolpyruvate and pyruvate kinase. The optimal concentrations of adenine nucleotides, glutamate, cofactors and the substrate leucine were determined for all three energy-providing systems. The inhibitors of protein synthesis, puromycin and chloramphenicol, completely blocked amino acid incorporation by isolated skeletal muscle in mitochondria, while cycloheximide had no effect. Analysis of the labeled mitochondrial proteins by sodium dodecylsulfate polyacrylamide gel electrophoresis revealed five labeled bands of molecular weights ranging from 38,000 to 10,000.Amino acid incorporation by skeletal muscle mitochondria isolated from diabetic rats was decreased over 60% as compared to mitochondria from controls when measured in the presence of glutamate and atractylate, ADP and glutamate or the ATP regenerating system. By contrast, amino acid incorporation by liver mitochondria isolated from diabetic rats did not differ significantly from control values when measured with four different energy sources.  相似文献   

5.
Amino acid incorporation in a cell-free system derived from rat liver has previously been found to be inhibited by GSSeSG (selenodiglutathione). In the present experiments the effect of GSSeSG on protein synthesis in 3T3-f cells, on growth and protein synthesis in Escherichia coli, and on amino acid incorporation in a cell-free system derived from E. coli, was studied. GSSeSG inhibits the incorporation of [3H]leucine into protein by 3T3-f cells. This inhibition cannot be reversed by removing GSSeSG and is correlated with the uptake of GSSeSG. Sodium selenite (Na2SeO3) and oxidized glutathione had no inhibitory effect in this system. [3H]Uridine or [3H]thymidine incorporation into RNA or DNA was not inhibited, indicating that the primary action of GSSeSG was on protein synthesis. GSSeSG did not influence the growth of E. coli in a synthetic medium, although enhanced amino acid incorporation was observed. In the cell-free system derived from E. coli, amino acid incorporation was not changed by GSSeSG, indicating that elongation factor G, in contrast to elongation factor 2 of mammalian cell systems, is not blocked by GSSeSG.  相似文献   

6.
Angiotensinogen (renin substrate) and albumin are synthesized by isolated hepatocytes almost linearly for 5 hr. The incorporation of radioactive leucine into total protein proceeded linearly for 3 hr. Without addition of amino acids to the incubation medium the synthesis of both proteins was still linear but fell off to 40% compared to the synthesis rate obtained by incubation with amino acids in serum concentrations. Higher amino acid concentrations could not further stimulate the synthesis. Addition or withdrawal of tryptophan had no effect on the synthesis rate of both proteins. After 5 hr incubation hydrocortisone had stimulated the incorporation of radioactive leucine into total protein by 13%, the albumin synthesis by 43%, and the angiotensinogen synthesis by 142%.  相似文献   

7.
The isolated, perfused working rat heart was used as a model for investigating the effects of chloramphenicol on mitochondrial amino acid incorporation in an intact organ. The most obvious inhibitory effects of chloramphenicol were extramitochondrial: decreased mechanical performance of the heart and marked reduction in glucose uptake and lactate production. The ATP levels of the perfused heart were significantly increased at high levels of chloramphenicol. Chloramphenicol (50 to 500 μg/ml perfusate) did not inhibit the incorporation into the mitochondria or other subcellular fractions. A specific inhibitory effect on mitochondrial protein synthesis could only be observed when the cytoplasmic protein synthetizing system had been inhibited by cycloheximide. Under these conditions it could be demonstrated that the chloramphenicol sensitivity was greater for the synthesis of the insoluble proteins than for that of the soluble proteins of the mitochondria The chloramphenicol inhibition of mitochondrial protein synthesis which could be obtained in the isolated heart was approx. 70% which was twice as high as could be achieved when isolated mitochondria were incorporating amino acids.  相似文献   

8.
Hydroxyurea (HU), generally considered to be a specific inhibiter of DNA synthesis, has an inhibitory effect on the incorporation of TCA-precipitable [3-H]leucine in peripheral lymphocytes. This action is not secondary to the inhibition of DNA synthesis since incorporation of [3-H]leucine is unaffected when DNA synthesis is inhibited by 5-fluorodeoxyuridine (FUdR); it does not appear to be directly related to inhibition of RNA synthesis; and it is not mediated at the level of translation since HU has no effect on protein synthesis in rabbit reticulocytes. The relevance of these findings to the use of HU as a DNA inhibitor is discussed.  相似文献   

9.
10.
A-549 cells of human lung adenocarcinoma were subjected to heat shock (30 min, 44 degrees C) which caused substantial decreases in the rates of biosynthesis of the great bulk of cellular proteins with simultaneous increases in the synthesis rates of the 70 kDa protein predominantly localized in cell cytosol. By the 6th hour after the heat shock cessation this protein synthesis reached its maximum; by the 18th hour it was no longer detectable, while the protein itself was not denatured. During the recovery after the heat shock the ability of the serum-free culture medium conditioned by A-549 cells in autocrine regulation of [3H]thymidine incorporation into DNA and [3H]leucine incorporation into proteins changed also. The conditioned medium obtained within 1-3 hours after the heat shock did not influence the intensity of DNA synthesis, while the medium obtained 4-48 hours after the heat shock stimulated this process, the maximal effect (3.3-fold stimulation) being observed in the case of the 48-hour conditioned medium. Temporary (1 hour) acidification of the conditioned media down to pH 2.0 resulted in complete inhibition of the stimulating activity. Besides, these media acquired an ability to inhibit [3H]thymidine incorporation into the DNA of tracer cells. Study of effects of conditioned media on the rate of [3H]leucine incorporation into A-549 cell proteins revealed that the media obtained 1-4 hours after the heat shock inhibited this process, while the media obtained 6-18 hours thereafter stimulated it 1.2-2.1-fold. In the test systems under study temporary acidification of the media increased their stimulating influence on [3H]leucine incorporation into cellular proteins.  相似文献   

11.
The growth of HeLa cells in Hepes-buffered medium was significantly more sensitive to the inhibitory effects of erythromycin than in medium buffered by the more conventional bicarbonate-CO2 system. Since growth inhibition by erythromycin became more pronounced as the pH of the medium was increased the difference in erythromycin sensitivity between the Hepes-buffered medium vs. the bicarbonate-CO2-buffered medium is most likely due to pH effects. The relative growth sensitivity to erythromycin of ERY2301, an erythromycin-resistant mutant of HeLa, was also affected by elevated pH of the growth medium. However, ERY2301 cells were able to proliferate to a greater extent in the presence of erythromycin than HeLa cells grown under the same conditions. The selective growth advantage of ERY2301 (in the presence of erythromycin) is best seen in medium of pH 7.4, or in the Hepes-buffered medium. In vitro protein synthesis by intact mitochondria isolated from HeLa cells was relatively insensitive to erythromycin inhibition at pH 7.4 and 7.6, but at high pH values was inhibited approx. 50%. Although the erythromycin sensitivity of ERY2301 mitochondrial protein synthesis was also affected by increasing the pH, the incorporation of [3H]leucine was more resistant to erythromycin than that observed for HeLa mitochondria over the pH range tested. Increasing the concentration of erythromycin at a given pH did not result in a further increase in the inhibition of either HeLa or ERY2301 mitochondrial protein synthesis. When the mitochondrial membranes were disrupted by Triton X-100, erythromycin inhibition of HeLa mitochondrial protein synthesis was pH dependent and, at the lower pH values tested, greater inhibition was observed as the erythromycin concentration was increased. ERY2301 mitochondrial protein synthesis under the same conditions displayed a high level of erythromycin-resistant activity independent of both pH and erythromycin concentration. It is suggested that, as has been proposed for bacterial systems, only the non-protonated molecule of erythromycin is effective in inhibiting mitochondrial protein synthesis. The ability of erythromycin to permeate the mitochondrial membranes and the plasma membres may also be facilitated by a higher pH.  相似文献   

12.
In experiments with isolated hepatocytes, Seglen [1] has shown that in the combined presence of NH4Cl and high concentrations of valine, incorporation of this amino acid into cell protein is inhibited. He has proposed that NH4Cl, in addition to inhibiting protein degradation in lysosomes, inhibits protein synthesis in these cells as part of a general toxic effect. To determine if NH4Cl inhibits protein synthesis in cultured cells we incubated rat embryo fibroblasts, prelabeled with [14C]leucine, in the presence of 10 mM NH4Cl and 15 mM leucine in both growth and serum-free media. We did not detect any effect of NH4+ on protein synthesis or cell growth over a 3-day period. A partial inhibition of protein degradation was observed, particularly during the first 24 h of the experiment. In pulse-labeling experiments, NH4Cl had no effect on the incorporation of [3H]leucine in the media. High concentrations of leucine, however, reduced re-utilization of endogenously derived leucine and inhibited the transport of valine into the cellular acid-soluble pool.These experiments show that at least in cultured fibroblasts 10 mM NH4Cl shows no significant toxicity beyond an inhibition of lysosomal function. In addition these data suggest the possibility that high chase concentrations of one amino acid in the medium may be saturating a common transport mechanism, in effect reducing the transport of other amino acids utilizing this mechanism. A combined blockade by both NH4Cl and a high concentration of a single amino acid may in certain sensitive cells result in a significant reduction in protein synthesis.  相似文献   

13.
Summary 1. Incorporation of [H3]leucine into the TCA insoluble fraction of rat liver mitochondria incubatedin vitro is inhibited by uncouplers of oxidative phosphorylation. The inhibition is not correlated with the activation of mitochondrial ATPase. 2. Dependence of mitochondrial protein synthesis on the transmembrane potential is manifested in a wide range of K+ and Mg++ concentrations in the incubation media. 3. The inhibitory action of uncouplers shows a lag period equal to 5–7 minutes, this lag period however is not observed when the uncoupler is added to puromycin-treated mitochondria. 4. Dependence of mitochondrial protein synthesis on the transmembrane potential, which represents a property characteristic for the inner mitochondrial membrane suggests that mitochondrial ribosomes act in close contact with the mitochondrial membrane system.Abbreviations MPS mitochondrial protein synthesis - CAP chloramphenical - CCP 2,4,6-chlorocarbonyl cyanide phenylhydrazone - FCCP p-trifluoromethoxy carbonyl cyanide phenylhydrazone - PEP phosphoenolpyruvate - Pi inorganic phosphate  相似文献   

14.
Livers from fed male Sprague-Dawley rats, made hyperthyroid by treatment with triiodothyronine (T3), were isolated and perfused in vitro. T3 (9.6 micrograms/day) was administered by osmotic minipump implanted intraperitoneally. Treatment with T3 for either 7 or 28 days reduced hepatic output of very-low-density lipoprotein (VLDL) and net synthesis of total associated apoproteins. After 7 days treatment, incorporation of [4,5-3H]leucine by livers from hyperthyroid rats into VLDL apo E was reduced while incorporation into apo B100, apo B48, and apo C's did not differ from euthyroid controls. The depressed incorporation of radioactivity into total VLDL protein was accounted for almost entirely on the basis of apo E. Incorporation of leucine into the total lipoprotein apo E isolated in the d less than 1.210 was also diminished by the hyperthyroid state, while that into apo B100, apo B48, and apo C in the total perfusate lipoprotein was similar to that of the euthyroid, as was found for the VLDL. Increased amounts of radioactive apo B100 and apo B48, however, were detected in the HDL fraction isolated from the medium perfusing livers from hyperthyroid rats. Hepatic uptake of VLDL protein and lipid was similar in euthyroid and hyperthyroid rats. Reduction of VLDL lipid and protein in the medium perfusing livers from T3-treated rats, therefore reflects hormonal action on synthesis and secretion, rather than uptake. Since the availability of apo B is thought to be required for secretion of VLDL, our observation suggests that synthesis of apo B is not depressed by treatment with T3 and that apoprotein synthesis is not a significant factor in the decreased output of VLDL by the liver, but that, as reported earlier, the lower output is a consequence of decreased synthesis of TG, the result of a diminished supply of hepatic glycero-3-phosphate in the hyperthyroid. The diminished amount of VLDL protein appears to be accounted for by the decreased quantity of apo E associated with a smaller VLDL particle secreted by livers from T3-treated rats.  相似文献   

15.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

16.
Xenopus embryos were dissociated into cells and cultured in Ca2+-free medium to study the relationship between the cell-to-cell interaction and macromolecular synthesis. Under the conditions, cells did not aggregate at all, and remained isolated even while they were dividing actively. Synthesis of DNA and protein as studied by the incorporation of (3H)thymidine and (3H)leucine proceeded as in the aggregating cells. Also, the activity to synthesize rRNA, 5S RNA, and heterogeneous RNA as determined by the incorporation of (3H)uridine was not impaired. Such an increase in the activity of alkaline phosphatase, as occurs in embryos after the gastrula stage, was found to be inhibited greatly when early-blastula cells were cultured in the non-aggregating conditions. However, we found here that the inhibition was not observed with cells isolated from late-blastulae. Therefore, it appears that the increase in the activity of alkaline phosphatase during post-gastrular stages is dependent on some cellular commitment which may be established by cell-to-cell contact during the blastula stage.  相似文献   

17.
Changes in the yield of mitochondrial protein, in the incorporation of leucine into mitochondrial proteins, and in the respiratory activity of isolated mitochondria were determined in the remaining kidney (renoprival kidney) of the rat during the first 72 hr postmononephrectomy. At 24, 48, and 72 hr the yield of mitochondrial protein isolated from the renoprival kidney increased 13, 23, and 34%, respectively, whereas renal mass increased 9, 14, and 19%. Incorporation of [3H]-leucine in vivo into total mitochondrial protein was increased 96 and 130% over control at 12 and 24 hr, respectively. Incorporation of leucine in vitro by mitochondria was increased 27% over control at 24 hr; chloroamphenicol, but not cycloheximide, inhibited the in vitro incorporation.  相似文献   

18.
The effects of phenobarbital on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Phenobarbital (2 mM) decreased [14C]-glucosamine and [14C]leucine incorporation into liver proteins and markedly inhibited their incorporation into medium (secretory) proteins. This inhibitory effect of phenobarbital was dose dependent and not reversible under the conditions of this study. In the presence of cycloheximide, an inhibitor of peptide synthesis, phenobarbital still inhibited the release of glycoproteins into the medium; however, the specific activity of liver glycoproteins was increased. The effects of phenobarbital on hepatic macromolecular secretion, independent of its effects on synthesis, were determined by prelabeling proteins in a liver slice system with either [14C]leucine of [14C]glucosamine. When phenobarbital was present, the secretion of these prelabeled proteins into the medium was impaired. 12 h after intraperitoneal injections of phenobarbital, glycoprotein secretion was inhibited from liver slices prepared from the pretreated rats. This inhibition of secretion occurred even though protein synthesis was stimulated and intracellular glycosylations unaffected. The results of this study indicate that phenobarbital impairs the secretion of glycoproteins by the liver.  相似文献   

19.
Protein synthesis in yeast mitochondria shows biphasic Arrhenius plots both in vivo and in vitro, with a twofold increase in the activation energy below the transition temperature suggesting a functional association between mitochondrial protein synthesis and the inner membrane. Analysis by gel electrophoresis of mitochondrial translation products labeled in vivo showed that the same proteins are synthesized and then inserted into the membrane above and below the transition temperature of the membrane. The rate of leucine uptake into mitochondria was decreased at least fivefold in the presence of chloramphenicol, suggesting that leucine is used mainly for protein synthesis. In the absence of chloramphenicol, the rate of leucine uptake was always slightly higher but comparable to the incorporation rate of leucine into protein at all temperatures studied, suggesting that the transport of leucine into mitochondria is not rate-limiting for protein synthesis. The ionophore valinomycin or the uncoupler carbonyl phenylhydrazone (CCCP) inhibited 75-80% of the leucine uptake in the presence of chloramphenicol. In addition, the omission of respiratory chain substrates and the ATP-regenerating system led to a 93% inhibition of uptake, suggesting that leucine uptake may occur by an active transport mechanism.  相似文献   

20.
Applied diamines and polyamines inhibited the incorporation of radioactively labeled leucine and uridine into trichloroacetic acid-insoluble material in apple (Malus domestica Borkh, cv Golden Delicious) fruit tissue. The inhibitory effect was in general more pronounced with the higher molecular weight amines. Putrescine at 5 millimolar inhibited leucine incorporation by 37% and uridine by 44%. Spermidine and spermine at the same concentration inhibited uridine incorporation by 60%. The polyamines at concentrations between 0.1 and 1.0 millimolar inhibited leucine incorporation by 55 to 90%. The inhibitory effect of 0.1 to 10 millimolar polyamines on dark- and wound-induced senescence or ethylene production, is discussed in the light of interference with macromolecular synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号