首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structure of filamentous bacteriophage Pf1 has been determined to 7 Å resolution by analysis of X-ray diffraction data from partially oriented fibers of virus particles. The continuous intensity distribution along layer-lines was measured by numerically separating contributions from overlapping layer-lines. The data were phased by an iterative refinement technique that used the known spatial extent and high α-helical content of the virus particle to refine a structural model. This refinement converges to a unique structural solution that is consistent with the X-ray data and with information derived from physical and chemical studies. The coat protein consists of two α-helical segments: one, almost parallel to the particle axis, is centered at a radius of about 15 Å; the other, at about 25 Å radius, is tilted by about 25 ° to the particle axis. This structure is consistent with every generalization about α-helical packing. The inner and outer segments interlock along most of their length with a crossing angle of 20.5 °. The inner α-helical segments also interact with symmetry-related copies of themselves, as do the outer segments. The double layer of tightly packed, intricately interlocked α-helices forms a stable, 20 Å thick protein coat around the viral DNA.  相似文献   

2.
Structure of the three-chain unit of the bovine epidermal keratin filament   总被引:23,自引:0,他引:23  
The characteristic α-type X-ray diffraction pattern displayed by bovine epidermal keratin filaments can be ascribed to the presence of segments of triple-chain coiled coil α-helix in the repeating three-chain unit of the filaments.Limited proteolysis of filaments polymerized in vitro or a citrate-soluble protein derived from them with crystalline trypsin releases two types of α-helix-enriched particles which provide information on the structure of the three-chain unit. The smaller, particle 2, of molecular weight 42,500, α-helix content of 92% and dimensions of 180 Å × 20 Å, consists of three chains aligned side-by-side that presumably form a coiled coil. The high yields of particle 2 allow the conclusion that all of the α-helix of the epidermal keratin filament is present in the form of these discrete three-chain α-helical segments. The larger, particle 1, recovered during the earlier stages of digestion has a molecular weight of 100,000 to 110,000, α-helix content of 75%, average dimensions of 400 Å × 20 Å and also consists of three chains aligned side-by-side. It contains two α-helical segments corresponding to particle 2 which are located at the amino -terminal and carboxyl-terminal ends and are separated by a region of non-helix. Particle 1 contains all of the α-helix and therefore is the major portion of the three-chain unit of the keratin filament. The products resulting from reaction of intact filament subunits with N-bromosuccinimide suggest that particle 1 is formed during digestion by removal of regions of non-helix from each end of this unit.The structure of the three-chain unit of the bovine epidermal keratin filament may thus be viewed as three polypeptide subunits aligned side-by-side with two discrete coiled coil α-helical segments interspersed with regions of non-helix.  相似文献   

3.
M. Suwalsky  L. De La Hoz 《Biopolymers》1973,12(9):1997-2006
An X-ray study has been made of the synthetic polypeptide poly-L -ornithine hydrobromide to investigate whether, like the chemically related polypeptides poly-L -lysine and poly-L -arginine hydrochlorides, it can undergo conformational changes merely from variations in its degree of hydration. X-ray powder and fiber photographs of specimens with from half up to about three molecules of water per ornithine residue show features that suggest a “cross-β-pleated-sheet” structure. Each pleated sheet is formed from parallel chains and the sheets are piled up along the b axis. The spacings, which do not vary appreciably with hydration, can be satisfactorily indexed in terms of an orthogonal unit cell with a = 4.60 Å, b = 30.2 Å, and c = 6.64 Å. These dimensions are shown by models to be compatible with the proposed structure. Removal of the last half molecule of water results in a very diffuse pattern but on rehydration the sharp pattern reappears. Specimens containing four to nine molecules of water per residue show a quite different pattern. Reflections other than equatorial are absent in oriented diagrams except for a 5.4 Å diffuse streak across the meridian which is suggestive of an α-helical structure. Increasing the relative humidity from 86% to about 100% causes the a axis of the hexagonal unit cell to increase from 14.7 Å to 15.3 Å. On drying, the β structure reappears once again. These conformational changes are very similar to those observed in poly-L -lysine hydrochloride except that the latter shows a more stable α-helical form. This difference may be explained in terms of stabilizing hydrophobic interactions between side chains, since ornithine has a shorter side chain than lysine.  相似文献   

4.
Crystals of poly-L -lysine have been grown from aqueous solution in the presence of divalent anions. The most stable of these incorporate the HPO ion and are precipitated by the addition of sodium monohydrogen phosphate to solutions of poly-L -lysine HBr. Precipitation at or slightly above room temperature gives rise to single crystals of α-poly-L -lysine HPO4 in the form of hexagonal lamellae about 150 Å thick. The axes of the helical polypeptide molecules are oriented normal to the planes of the lamellae, and since molecular length is about 1100 Å in the α-helical conformation, these helices must be folded. The a parameter of the hexagonal unit cell is 19.55 Å for crystals immersed in mother liquor, and the lysine side chains are almost fully extended. Precipitation brought about by heating the same solutions to about 75°C produces micro-crystals of β-poly-L -lysine HPO4. A mode of packing of the anions in these crystals is proposed tentatively on the basis of an intersheet spacing determined from x-ray powder diffraction patterns. In general, α crystals are transformed to β structures on drying; conditions under which the transition can either be forestalled or reversed are discussed.  相似文献   

5.
Structure of polar pili from Pseudomonas aeruginosa strains K and O   总被引:21,自引:0,他引:21  
The polar pili of Pseudomonas aeruginosa strains K and O are hollow cylinders with 52 Å outer diameter and 12 Å inner diameter. There is a girdle of low electron density (interpreted as due to a local concentration of hydrophobic amino acid side-chains) centred at 31 Å diameter. Similar X-ray diffraction patterns are obtained from oriented fibres of the two types of pili, to a resolution of 7 Å in the equatorial direction and 4 Å in the meridional direction. The two types of pilin protein subunits have a similar molecular weight, and their sequences contain a number of homologous regions. They form a helical array with 4.06 to 4.08 units per turn of a basic helix that has a pitch of 40.8 Å for strain K pili and 41.3 Å for strain O pili at 75% relative humidity. A method is described for distinguishing between very similar diffraction patterns.There is strong intensity at 10 Å near the equator and at 5 Å near the meridian on the diffraction patterns. This intensity distribution is characteristic of α-helical rods running roughly in the direction of the fibre axis. The orientation of these rods was established by the fit between the transform of an α-helical polyalanine model and the strong near-equatorial layer-line.  相似文献   

6.
Study of magnesium paracrystals has shown that the troponin binding region of tropomyosin is within about 30 Å of a dyad axis which lies close to Cys190 and Leu197. The region of α-tropomyosin between residues 197 and 217 has an exceptionally small number of negative charges, a significantly high concentration of uncharged polar groups, and a large hydrophobic surface. These features suggest that this is the main binding site for troponin T. A second weaker site for calcium-sensitive binding to troponin could exist on the opposite face of the symmetrical double helix.  相似文献   

7.
Molecular dynamics (MD) simulations have been carried out for 62.5 ps on crystal structures of deoxy sickle cell hemoglobin (HbS) and normal deoxy hemoglobin (HbA) using the CHARMM MD algorithm, with a time step of 0.001 ps. In the trajectory analysis of the 12.5–62.5 (50 ps) simulation, oscillations of the radius of gyration and solvent-accessible surface area were calculated. HbS exhibited a general contraction during the simulation, while HbA exhibited a nearly constant size. The average deviations of simulated structures from the starting structures were found to be 1.8 Å for HbA and 2.3 Å for HbS. The average rms amplitudes of atomic motions (atomic flexibility) were about 0.7 Å for HbA and about 1.0 Å for HbS. The amplitudes of backbone motion correlate well with temperature factors derived from x-ray crystallography. A comparison of flexibility between the α- and β-chains in both HbA and HbS indicates that the β-chains generally exhibited greater flexibility than the α-chains, and that the HbS β-chains exhibit greater flexibility in the N-terminal and D- and F-helix regions than do those of HbA. The average amplitude of backbone torsional oscillations was about 9°, a value comparable with that of other simulations, with enhanced torsional oscillation occurring primarily at the ends of helices or in loop regions between helices. Comparison of atomic flexibility and torsional oscillation results suggests that the increased β-chain flexibility results from relatively concerted motions of secondary structure elements. The increased flexibility may play an important role in HbS polymerization. Time course analysis of conformational energy of association, hydrogen bonding and hydrophobic bonding (as calculated from solvent accessibility) shows that all three of these factors contribute to the stability of subunit association for both hemoglobins. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus has been crystallized as hexagonal plates, P3121, a = b = 64.6 A?, c = 238.8 A?, with the dimeric molecule (molecular weight, 90,000) occupying two crystallographic asymmetric units (Reid et al., 1973). Three heavy-atom derivatives have been identified and X-ray diffraction measurements have been made to 2.7 Å resolution, using the oscillation method. The three heavy-atom derivatives were methyl mercury (two sites, half occupied, 3 Å apart), uranyl acetate (single fully occupied site) and chloroplatinite PtCl42? (three sites of differing occupancy). The results were used to compute an electron density map at 2.7 Å resolution, which shows the monomer as a unit of about 60 Å × 60 Å × 40 Å. The maximum dimension of the dimer is about 130 Å. Most of the polypeptide chain has been traced uniquely. It includes five α-helices more than 12 Å long and several shorter helices. A six-stranded pleated-sheet structure lies in the centre of each subunit. The catalytic site of the enzyme is believed to be adjacent to the mercury-binding group.  相似文献   

9.
The radius of gyration and “persistence length” of poly-L -alanine, calculated from small-angle x-ray scattering data, have values of 56 Å and 44 Å, respectively, in dichloroacetic acid, and 78 Å and ~30 Å in a 1:1 v/v mixture of trifluoroacetic acid and trifluoroethanol. This can be interpreted to mean that poly-L -alanine exists in a relatively rigid, predominantly α-helical conformation in dichloroacetic acid and in an extended, more flexible form in the mixed solvent system.  相似文献   

10.
The content of glucosamine in the walls of daughter (without bud scars) and mother (multiscar) cells ofSaccharomyces cerevisiae was examined in a control and after treatment with dilute alkali, acid and buffer. The occurrence of chitin in the bud and birth scars is discussed. The results of IR and X-ray analysis of cell-wall fractions indicate the presence of α-chitin which is a part of the chitin-glucan complex. The size of the crystallite of α-chitin in this complex is about 60 Å.  相似文献   

11.
The filamentous bacterial virus is a simple and well-characterized model system for studying how genetic information is transformed into molecular machines. The viral DNA is a single-stranded circle coding for about 10 proteins. The major viral coat protein is largely α-helical, with about 46 amino acid residues. Several thousand identical copies of this protein in a helical array form a hollow cylindrical tube 1–2μ long, of outer diameter 60 Å and inner diameter 20 Å, with the twisted circular DNA extending down the core of the tube. Before assembly, the viral coat protein spans the cell membrane, and assembly involves extrusion of the coat from the membrane. X-ray fibre diffraction patterns of the Pf 1 species of virus at 4°C, oriented in a strong magnetic field, give three-dimensional data to 4 Å resolution. An electron density map calculated from native virus and a single iodine derivative, using the maximum entropy technique, shows a helix pitch of 5.9 Å. This may indicate a stretched A-helix, or it may indicate a partially 310 helix conformation, resulting from the fact that the coat protein is an integral membrane protein before assembly, and is still in the hydrophobic environment of other coat proteins after assembly.  相似文献   

12.
The structure of human lysozyme has been crystallographically refined at 1.5 Å resolution by difference map and restrained least-squares procedures to an R factor of 0.187. A comprehensive analysis of the non-bonded and hydrogen-bonded contacts in the lysozyme molecule, which were not restrained, revealed by the refinement has been carried out. The non-bonded CC contacts begin at ~3.45 Å, and the shorter contacts are dominated, as expected, by interactions between trigonal and tetrahedral carbon atoms. The CO contact distances have a “foot” at 3.05 Å. The CN distance plot shows a significant peak at 3.25 Å, which results from close contact between peptide NHs and carbonyl carbons involved in NiC′i ? 2 interactions in α-helices and reverse turns. The distances involving sulphur atoms discriminate SC trigonal interactions at 3.4 to 3.6 Å from SC tetrahedral interactions at 3.7 Å. All these types of non-bonded interactions show minimum distances close to standard van der Waals' separations.Analysis of hydrogen-bond distances has been carried out by using standard geometry to place hydrogen atoms and measuring the XHO distances. On this basis, there are 130 intramolecular hydrogens: 111 NHO bonds, of which 69 are between main-chain atoms, 13 between side-chain atoms and 29 between mainchain and side-chain atoms. If a cluster of four well-defined internal water molecules is included in the protein structure, there is a total of 19 OHO hydrogen bonds. The mean NO, NHO distances and HN?O angles are 2.96 ± 0.17 Å, 2.05 ± 0.18 Å and 18.5 ± 9.6 °, and the mean OO, OHO distances and HÔO angles are 2.83 ± 0.19 Å, 1.98 ± 0.26 Å and 23.8 ± 13.4 °. The distances agree well with standard values, although the hydrogen bonds are consistently more non-linear than in equivalent small molecules. An analysis of the hydrogen-bond angles at the receptor atom indicates that the α-helix, β-sheet and reverse turn have characteristic angular values. A detailed analysis of the regularity of the α-helices and reverse turns shows small but consistent differences between the α-helices in lysozyme and the current standard model, which may now need revision. Of the 21 reverse turns that include a hydrogen bond, the conformations of 19 agree very closely with four of the five standard types. We conclude that the restrained least-squares method of refinement has been validated by these analyses.  相似文献   

13.
An X-ray diffraction study of poly-L-arginine hydrochloride   总被引:2,自引:0,他引:2  
M Suwalsky  W Traub 《Biopolymers》1972,11(3):623-632
An x-ray study has been made of polyarginine hydrochloride to investigate whether, like polylysine hydrochloride, it can undergo conformational changes merely from variations in the degree of hydration. X-ray powder and fiber photographs of specimens containing up to about five molecules of water per arginine residue show features characteristic of α-helical structures including a 5.4-Å layer line and a meridional 1.5-Å reflection. Increasing the water content from 1/2 to 61/2 molecules per residue causes the a axis of the hexagonal unit cell to increase from 14.4 Å to 15.8 Å, with no appreciable change in the 27.0 Å c axis. Removal of the last half molecule of water results in a very diffuse α pattern, but on rehydration the sharp pattern reappears. Specimens containing five to twenty water molecules per residue show quite a different pattern, the spacing of which do not vary appreciably with hydration. This pattern includes a meridional 3.4-Å reflection, a feature commonly shown by β structures, and indeed all the reflections can be satisfactorily indexed in terms of a monoclinic unit cell with a = 9.26 Å, b = 22.05 Å, c = 6.76 Å, and γ = 108.9°. These dimensions are shown by models to be compatible with a β pleated-sheet structure.  相似文献   

14.
The role of end groups in determining stereochemistry and packing in hydrophobic helical peptides has been investigated using an α-aminosobutyric acid (Aib) containing model nonapeptide sequence. In contrast to the Boc-analogue, Ac-(Aib-Val-Ala-Leu)2-Aib-OMe crystallizes with two independent molecules in a triclinic cell. The cell parameters are: space group P1, a=10.100(2)Å, b=15.194(4) Å, c=19.948(5) Å, α=63.12(2)°, β=88.03(2)°, γ=88.61(2)°, Z=2, R=7.96% for 5140 data where |Fo|>3σ(F). The two independent molecules alternate in infinite columns formed by head-to-tail hydrogen bonding. The helices in the two independent molecules are quite similar to each other but one molecule is rotated ≈?123° about its helix axis with respect to the other. All the helical columns pack parallel to each other in the crystal. Replacement of the bulky Boc group does not lead to any major changes in conformation. Packing characteristics are also similar to those observed for similar helical peptides.  相似文献   

15.
The structure of 2-keto-3-deoxy-6-phosphogluconate aldolase has been extended to 2.8 Å resolution from 3.5 Å resolution by multiple isomorphous replacement methods using three heavy-atom derivatives and anomalous Bijvoet differences to 6 Å resolution (〈m〉 = 0.72). The replacement phases were improved and refined by electron density modification procedures coupled with inverse transform phase angle calculations. A Kendrew model of the molecule was built, which contained all 225 residues of a recently determined amino acid sequence, whereas only 173 were accounted for at 3.5 Å resolution. The missing residues were found to be part of the interior of the molecule and not simply an appendage. The molecule folds to form an eight-strand α/β-barrel structure strikingly similar to triosephosphate isomerase, the A-domain of pyruvate kinase and Taka amylase. With a knowledge of the sequence, the nature of the interfaces of the two kinds of crystallographic trimers have been examined, from which it was concluded that the choice of trimers selected in the 3.5 Å resolution work was probably correct for trimers in solution. The active site region has been established from the position of the Schiff base forming Lys144 but it has not been possible to confirm it conclusively in independent derivative experiments. An apparent anomaly exists in the location of Glu56 (about 25 Å from Lys144). The latter has been reported to assist in catalysis.  相似文献   

16.
X-ray diffraction and energy-minimization results are reported for poly(γ-phenethyl-L -glutamate). Orthorhombic unit-cell parameters of drawn fibers are a = 15.4 Å, b = 26.6 Å, c = 54.4 Å. Atomic coordinates are derived for an α-helix peptide conformation that corresponds to a calculated side-chain internal energy minimum. The side-chain conformation correlates well with the electron density projection; the side chains wrap around the α-helical main chain with the phenethyl ester group directed toward the N-terminus. The para-axis of the benzene ring is inclined at an angle nearly nearly normal to the helix axis. The x-ray structure factors calculated for this model, when compared to the 10 observed structure factors, yield a crystallographic reliability index of R = 0.23.  相似文献   

17.
The structure of the enzyme p-hydroxybenzoate hydroxylase (EC 1.14.13.2) in a complex with its substrate has been determined at a resolution of 2.5 Å. The molecular weight is 43,000 and the dimensions of one molecule are approximately 70 Å × 50 Å × 45 Å. The crystal structure contains dimers of these molecules. Approximately 16% of the residues occur in β-sheets and 26% in α-heliees. The molecule can be divided into three domains. The active site, near the isoalloxazine ring, is formed by side-chains of the three domains. The N-5 edge of the isoalloxazine ring points to p-hydroxybenzoate, which is bound in a deep cleft.  相似文献   

18.
The amino acid sequences of fragments from light meromyosin and heavy meromyosin subfragment-2 have been analysed and structural features noted. As with other α-fibrous protein sequences, there is a regular disposition of apolar residues in positions a and d of the heptapeptide-type repeat characteristic of the coiled-coil conformation. The common occurrence of acidic and basic residues in the e and g positions, respectively, give rise to a maximum number of interchain ionic interactions when the two parallel chains of myosin are in axial register. Although the quasi-repeating heptapeptides in the sequences both have two points of discontinuity (unlike that in most other α-fibrous proteins), secondary structure prediction methods indicate that the fragments will be 90 to 100% α-helical. Fast Fourier transform techniques have revealed a significant periodicity of about 27.4 ± 0.3 residues (~41 Å) in the linear disposition of the acidic residues and the basic residues in both of the fragments. This period is compatible with similarly directed myosin molecules in the thick filament being axially staggered with respect to one another by an odd multiple of 143 Å. Preliminary evidence is also presented to show that the sequence of the rod region of myosin may have a 28 residue gene duplication repeat.  相似文献   

19.
《Molecular membrane biology》2013,30(4-6):147-159
Abstract

To operate as a rotary motor, the ATP-hydrolyzing domain of the vacuolar H+-ATPase must be connected to a fixed structure in its membrane-bound proton pump domain by a mechanical stator. Although low-resolution structural data and spectroscopic analysis indicate that a filament-like subunit E/subunit G heterodimer performs this role, more detailed information about the relative arrangement of these subunits is limited. We have used a site-directed cross-linking approach to show that, in both bacterial and yeast V-type ATPases, the N-terminal α-helical segments of the G and E subunits are closely aligned over a distance of up to 40 Å. Furthermore, cross-linking coupled to mass spectrometry shows that the C-terminal end of G is anchored at the C-terminal globular domain of subunit E. These data are consistent with a stator model comprising two ~ 150 Å long parallel α-helices linked to each other at both ends, stabilized by a coiled-coil arrangement and capped by the globular C-terminal domain of E that connects the cytoplasmic end of the helical structure to the V-ATPase catalytic domain.  相似文献   

20.
The fine structure of phage HM 2 (group I) active on Clostridium saccharoperbutylacetonicum was studied by an electron microscopy with a negative-staining technique, and compared with those of more conventional types, phages HM 3 (group II) and HM 7 (group III), whose tails were clearly observed by a shadow-casting technique. This study revealed that phage HM 2 had an intricate tail which was not observed by a shadow-casting technique.

Phage HM 2 has an icosahedral head about 450 Å in diameter and a non-contractile tail about 300 Å long. The distal 130 Å of the tail axis has a width of 80 Å which is wider than the upper portion of the tail (50 to 60 Å). The distal enlargement is not seen in the hollow tail. Twelve fibrous-shaped appendages are attached symmetrically at the upper portion of tail axis and extend toward the distal base of the tail. Their length is a little shorter than 300 Å. They combine with divalent cations in the phage dilution medium, and also adsorb the host cell debris.

Phage HM 3 has an icosahedral head about 770 Å in diameter and a tail about 1000 Å long and 150 Å wide with contractile sheath. Phage HM 7 has an icosahedral head about 750 Å in diameter and a long non-contractile tail about 2000 Å long and about 120 Å wide with forked tip.

The structure of the tail of phage HM 2 is quite different from those of phages HM 3 and HM 7 hitherto described and those of the various phages of other bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号