首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomic DNA of tobacco leaf curl geminivirus (TLCV) from tomato plants with leaf curl disease in Japan has been sequenced. The single circular DNA molecule comprises 2,761 nucleotides. TLCV DNA contains six open reading frames (ORFs) capable of encoding proteins with a molecular weight greater than 10 K. In total nucleotide sequence comparisons with other geminiviruses, TLCV was most closely related to tomato leaf curl virus from Taiwan (TwToLCV) (76% identity), tomato leaf curl virus from Bangalore (ToLCV-Ba) (74%) and agerantum yellow vein virus (AYVV) (74%), all possessing a monopartite genome. The significant but relatively low sequence similarity in the genomic DNA between TLCV and other geminiviruses suggests it is a distinct geminivirus in genus Begomovirus.  相似文献   

2.
A stock culture of cotton leaf curl virus from Pakistan (CLCuV-PK), was transmitted by whiteflies (Bemisia tabaci) to seven plant species, including French bean, okra, tobacco and tomato, and caused vein thickening and leaf curl symptoms. It was readily detected in triple antibody sandwich ELISA (TAS-ELIS A) by 11 out of 31 monoclonal antibodies raised against the particles of three other geminiviruses: African cassava mosaic, Indian cassava mosaic and okra leaf curl viruses. Reaction strength was enhanced when the tissue extraction fluid contained sodium sulphite. Minor variations in epitope profile were found among virus isolates from cotton (Gossypium hirsutum) collected from different districts in Pakistan over a 5-year period. These epitope profiles were distinguishable from that of cotton leaf curl virus from G. barbadense in southern India but indistinguishable from the profiles of viruses causing yellow vein disease of okra in India or Pakistan, or leaf curl of okra {Abelmoschus esculentus), Hibiscus tiliaceus, radish or sunflower in Pakistan, suggesting that these plants are putative natural hosts of CLCuV-PK. The viruses in cotton, and in okra with leaf curl or yellow vein symptoms, were also detected by PCR with three pairs of CLCuV-PK-specific primers. Five additional whitefly-transmitted geminiviruses were found among isolates from 11 other naturally-infected species in Pakistan, and were distinguished by their epitope profiles. These viruses were associated, respectively, with tobacco leaf curl, squash yellow blotch, tomato yellow leaf curl, watermelon leaf crinkle and soybean yellow mosaic diseases. The first four of these viruses were detected readily by PCR with geminivirus general primers but only weakly, if at all, with two pairs of CLCuV-PK-specific primers. Pakistani crops are infected with a range of distinguishable but relatively closely related whitefly-transmitted geminiviruses, some of which resemble those found in India.  相似文献   

3.
Whitefly-transmitted geminiviruses were found to be associated with four diseases of crop plants in Burkina Faso: cassava mosaic, okra leaf curl, tobacco leaf curl and tomato yellow leaf curl. Tomato yellow leaf curl is an economically serious disease, reaching a high incidence in March, following a peak population of the vector whitefly, Bemisia tabaci, in December. Okra leaf curl is also a problem in the small area of okra grown in the dry season but is not important in the main period of okra production in the rainy season. The geminiviruses causing these four diseases, African cassava mosaic (ACMV), okra leaf curl (OLCV), tobacco leaf curl (TobLCV) and tomato yellow leaf curl (TYLCV) viruses, were each detected in field-collected samples by triple antibody sand-wich-ELISA with cross-reacting monoclonal antibodies (MAbs) to ACMV. Epitope profiles obtained by testing each virus isolate with panels of MAbs to ACMV, OLCV and Indian cassava mosaic virus enabled four viruses to be distinguished. ACMV and OLCV had similar but distinguishable profiles. The epitope profile of TobLCV was the same as that of one form of TYLCV (which may be the same virus) and was close to the profile of TYLCV from Sardinia. The other form of TYLCV reacted with several additional MAbs and had an epitope profile close to that of TYLCV from Senegal. Only minor variations within each of these four types of epitope profile were found among geminivirus isolates from Burkina Faso. Sida acuta is a wild host of OLCV.  相似文献   

4.
A serious disorder of unknown aetiology was found on the poinsettia cv. Angelica, a recent introduction to Taiwan. The symptoms of downward leaf curling and vein enation were similar to those of leaf curl disease on tobacco. The causal agent of the disease was transmitted to healthy plants of'Angelica'poinsettia, common poinsettia and tobacco by whiteflies. Twinned particles measuring 16-18 × 30-32 nm were detected in a purified preparation obtained from diseased leaf tissues of'Angelica'poinsettia, indicating that the disease is caused by a geminivirus. An earlier introduction of common poinsettias also showed mild leaf curl symptoms under natural condition. When the causal agent of this disease was transmitted to healthy'Angelica'poinsettia plants by whiteflies or bud grafting, these plants also developed severe leaf curl symptoms, indicating that the disease is not a new introduction to Taiwan.  相似文献   

5.
Geminivirus associated with yellow leaf disease of cantaloupe plants was detected using polymerase chain reaction (PCR) with geminivirus-specific degenerate primers which anneal within the AC1 ORF (replication initiator protein gene) and the AV1 ORF (coat protein gene). A DNA fragment of 1.2 kbp was amplified, cloned and sequenced. The 32-base stem loop region was found in the amplified fragment. This included the conserved nonanucleotide sequence TAATATTAC present in all geminiviruses. The nucleotide sequence of the intergenic region (IR) was compared with 28 whitefly-transmitted geminiviruses. The geminivirus associated with yellow leaf disease of cantaloupe plants showed 96.2% sequence identity with DNA A of tomato leaf curl geminivirus from India (ToLCV-In2). These data suggest that cantaloupe yellow leaf disease was caused by ToLCV.  相似文献   

6.
The genome of an isolate of tomato yellow leaf curl virus from Sardinia, Italy (TYLCV-S), a geminivirus transmitted by the whitefly Bemisia tabaci, has been cloned and sequenced. The single circular DNA molecule comprises 2770 nucleotides. Genome organisation closely resembles that of the DNA A component of the whitefly-transmitted geminiviruses with a bipartite genome. A 1.8 mer of the TYLCV-S genome in a binary vector of Agrobacterium tumefaciens is infectious upon agroinoculation of tomato plants. Typical tomato yellow leaf curl disease symptoms developed about three weeks after inoculation. The disease was transmitted by the natural vector B.tabaci from agroinfected plants to test plants, reproducing in this way the full biological cycle and proving that the genome of TYLCV-S consists of only one circular single-stranded DNA molecule. Contrary to the other whitefly-transmitted geminiviruses described so far, there is no evidence for the existence nor the necessity of a second component (B DNA) in the TYLCV-S genome.  相似文献   

7.
RNA interference (RNAi), a conserved RNA‐mediated gene regulatory mechanism in eukaryotes, plays an important role in plant growth and development, and as an antiviral defence system in plants. As a counter‐strategy, plant viruses encode RNAi suppressors to suppress the RNAi pathways and consequently down‐regulate plant defence. In geminiviruses, the proteins AC2, AC4 and AV2 are known to act as RNAi suppressors. In this study, we have designed a gene silencing vector using the features of trans‐acting small interfering RNA (tasiRNA), which is simple and can be used to target multiple genes at a time employing a single‐step cloning procedure. This vector was used to target two RNAi suppressor proteins (AC2 and AC4) of the geminivirus, Tomato leaf curl New Delhi virus (ToLCNDV). The vector containing fragments of ToLCNDV AC2 and AC4 genes, on agro‐infiltration, produced copious quantities of AC2 and AC4 specific siRNA in both tobacco and tomato plants. On challenge inoculation of the agro‐infiltrated plants with ToLCNDV, most plants showed an absence of symptoms and low accumulation of viral DNA. Transgenic tobacco plants were raised using the AC2 and AC4 tasiRNA‐generating constructs, and T1 plants, obtained from the primary transgenic plants, were tested for resistance separately against ToLCNDV and Tomato leaf curl Gujarat virus. Most plants showed an absence of symptoms and low accumulation of the corresponding viruses, the resistance being generally proportional to the amounts of siRNA produced against AC2 and AC4 genes. This is the first report of the use of artificial tasiRNA to generate resistance against an important plant virus.  相似文献   

8.
Geminiviruses are single-stranded DNA plant infecting viruses that cause major losses in important crops in tropical and subtropical countries. Tomato leaf curl virus (TLCV) belonging to the genera Begomovirus, is a whitefly-transmitted geminivirus that causes a severe leaf curl disease in tomato (Lycopersicon esculentum). The importance of this disease has prompted a great need for a rapid identification of TLCV in its hosts and vector. Polymerase chain reaction (PCR) is the most sensitive approach to detect a minute amount of viral nucleic acid. It is the most ideal method to amplify geminiviruses as they replicate via a double-stranded, circular DNA form. In this study, geminivirus specific degenerated primers were employed to detect TLCV occurring in its vector whitefly Bemisia tabaci by PCR based approach. One primer pair, amplified TLCV DNA fragment of about 1.1 Kb representing partly replicase gene, intergenic region and partly coat protein gene was used. When a set of primer targeted to the core region of the coat protein gene of geminivirus was used, a PCR amplified fragment of about 0.5 Kb was obtained. This approach is highly useful for an early detection of TLCV occurring in very small amount in the vector B. tabaci. Its implications in geminivirus management strategies and their differentiation and being discussed.  相似文献   

9.
Ageratum conyzoides, Croton bonpladianum and Malvastrum coromandelianum are common weeds found around agricultural fields. In several cases these were found to exhibit vein yellowing and yellow mosaic symptoms. Using degenerate primers specific for whitefly-transmitted geminiviruses (WTGs), and total DNA isolated from such infected plants (exhibiting the above symptoms) as a template, 1.2kbp fragments were amplified and were shown to have homology to DNA-A of Indian tomato leaf curl virus (ITLCV) by Southern hybridization. In control experiments the same primers failed to amplify any DNA fragments from the total DNA isolated from healthy plants (no symptoms as above). These results show that Ageratum, Croton and Malvastrum harbour geminivirus(es).  相似文献   

10.
Tobacco leaf curl is widespread in several states in India including Andhra Pradesh, Gujarat, Karnataka, Bihar and West Bengal. Tobacco leaf curl virus (TbLCV) isolates collected from five different parts of India induced four distinct symptom phenotypes (group I, II, III & IV) on tobacco cultivars Samsun and Anand 119 (Valand & Muniyappa, 1992). PCR was performed on DNA extracted from group I and IV leaf curl‐affected tobacco from Karnataka, India using degenerate begomovirus‐specific primers. Subsequent cloning and sequencing of PCR products revealed preliminary evidence for the presence of at least three begomoviruses in the affected material following alignment of a 333 bp region of the coat protein gene (CP). The complete CP and common region (CR) of two putative begomoviruses, Tobacco leaf curl virus‐Karnataka1 (TbLCV‐Kar1) and Tobacco leaf curl virus‐Karnataka2 (TbLCV‐Kar2), were sequenced using PCR clones obtained with designed sequence‐specific primers. Phylogenetic analysis of the CP and CR of TbLCV‐Kar1 and TbLCV‐Kar2 placed them in the Asian Old World begomovirus cluster. The two viruses differed from each other significantly in both the CP gene and the CR (< 90% nucleotide sequence identity). This difference, in conjunction with distinct iterative sequences strongly suggests that these begomoviruses are distinct from one another. Group I and IV tobacco were also found to harbour a possible third begomovirus following the 333 bp CP alignment. Comparison of TbLCV‐Kar1 and TbLCV‐Kar2 with other geminiviruses, showed that both sequences shared high nucleotide sequence identity (> 90%) with other begomoviruses in either the CP or CR, thereby suggesting these viruses to be possible strains of other reported begomoviruses. Combined comparison of the CP and CR sequences however, suggests that the two viruses are not strains of other reported begomoviruses, but may be distinct begomoviruses that could have arisen through recombination events during mixed infections. Phylogenetic comparison demonstrated no significant homology between the Indian tobacco begomoviruses and a tobacco‐infecting begomovirus from Zimbabwe, again showing that as with other geminiviruses, there is a geographic basis for phylogenetic relationships rather than an affiliation with tobacco as a host.  相似文献   

11.
Chinese tomato yellow leaf curl virus--a new species of geminivirus   总被引:5,自引:0,他引:5  
GeminivirusesareagroupofplantvirusescharacterizedbytheircircularsinglestrandedDNA(ssDNA)genomeandauniquegeminateparticlemorphology[1].Geminivirusesaredividedintothreesubgroupsonthebasisofgenomeorganizationandinsectvector:AllsubgroupIgeminivirusesareleaf…  相似文献   

12.
Preiss W  Jeske H 《Journal of virology》2003,77(5):2972-2980
Geminiviruses package single-stranded circular DNA and replicate via double-stranded DNA intermediates. During the past decade, increasing evidence has led to the general acceptance that their replication follows a rolling-circle replication mechanism like bacteriophages with single-stranded DNA. In a recent study, we showed that this is also true for Abutilon mosaic geminivirus (AbMV), but that this particular virus may also use a recombination-dependent replication (RDR) route in analogy to T4 phages. Because AbMV is a special case, since it has been propagated on ornamental plants for more than a hundred years, it was interesting to determine whether RDR is common among other geminiviruses. We analyzed geminiviruses from different genera and geographic origins by using BND cellulose chromatography in combination with an improved high resolution two-dimensional gel electrophoresis, and we conclude that multitasking in replication is widespread, at least for African cassava mosaic, Beet curly top, Tomato golden mosaic, and Tomato yellow leaf curl virus.  相似文献   

13.
番茄曲叶病及其血清学和PCR测定   总被引:11,自引:0,他引:11  
我国曾报道的番茄病毒病有多种,其中最常见的是黄瓜花叶病毒(CMV)和烟草花叶病毒(TMV)引起的花叶病。柯冲等(1964)在大陆首次报道烟粉虱(Bemisia tabaci)传播的番茄病毒病——番茄黄顶病,此病在50~60年代曾在广州市郊流行,造成大面积减产。Green等(1984)报道台湾发生番茄黄曲叶病,此病与日本的番茄黄矮病(Tomato yellow dwarf)相似,并且与烟草曲叶病毒(TLCV)有血清学关系。印度、委内瑞拉等国也曾报道发生由烟粉虱传播的番茄曲叶病和番茄黄曲叶病。1991和1992年秋,在广西南宁市郊发现一种症状表现为植株矮缩,叶片向上向内卷曲,叶背面产生耳状或杯状增生物,对光看有时可见叶脉呈墨绿色,不结果或少结果的番茄病害。1992年秋广西农业科学院的番茄试验地发病率高达6.8%,对当地秋番茄生产构成了威胁。作者对病害症状、传播、血清学反应及PCR分析等方面与烟草曲叶病毒进行了比较研究,证实了该病的病原与烟草曲叶病毒有很高的同源性。现将研究结果简报如下。  相似文献   

14.
Molecular phylogeny of geminivirus infecting wild plants in Japan   总被引:5,自引:0,他引:5  
Few studies have been made on the molecular divergence of plant viruses. To remedy this deficiency, we examined the molecular divergence of the tobacco leaf curl geminivirus (TLCV). TLCV infects not only tobacco but alsoEupatorium andLonicera in the field and causes yellow vein disease. A total of 29 nucleotide sequences of the replication protein gene (ORF C1) of geminiviruses infecting wild plants ofE. makinoi, E. glehni andL. japonica collected from ten localities was determined. Highly divergent sequences were obtained not only among host plant populations but also within a host population. Phylogenetic analyses showed that the TLCVs infectingEupatorium andLonicera were clustered into three different clades, and were either paraphyletic or polyphyletic. This result is the first evidence demonstrating that wild populations of single plant species possess genetically diversified virus strains. Comparison with recently reported genetic variations of tobacco mild green mosaic tobamovirus (TMGMV) revealed three characteristics of TLCV evolution: (1) a higher nucleotide substitution rate, (2) more frequent migration among geographically isolated host populations, and (3) more frequent host changes to different plant families. While TMGMV is an RNA virus, TLCV has DNA genomes. In animal viruses, RNA viruses tend to evolve faster than DNA viruses. Our results indicated that this trend may not hold for plant viruses.  相似文献   

15.
The incidence of disease caused by tobacco leaf curl geminivirus (TbLCV) in ten tobacco growing areas of India ranged from 1.2% to 77%. The highest incidence of disease was observed in Andhra Pradesh (77%) followed by Gujarat (59%), Karnataka (17%), Bihar (11.6%) and West Bengal (5.4%). Under field conditions, an average of 32 adult whiteflies (Bemisia tabaci) per plant were recorded in Andhra Pradesh followed by Gujarat (20), Karnataka (12), Bihar (8) and West Bengal (5). In sequential sowings at Bangalore, all the plants were infected within 90 days in plots planted from February to June. Infection in plots planted later was progressively less. There was a positive correlation between whitefly catches and the final incidence of leaf curl disease in plantings. TbLCV was transmitted by Bemisia tabaci to 35 plant species, including Beta vulgaris, Capsicum annuum, Carica papaya, Cymopsis tetragonoloba, Lycopersicon esculentum, Sesamum indicum, Phaseolus vulgaris and Petunia hybrida. Forty five TbLCV isolates from different parts of India induced four distinct types of symptoms on tobacco cultivars Samsun and Anand 119. Group 1 isolates caused severe curling and cup-shaped enations; group II isolates induced pale green leaves, pit-like depressions and thorny enations: group III isolates caused leathery leaves, narrow and tiny protruding enations between the veins, and group IV isolates induced irregular thickening and swelling of veins and green flap-like enations on veins. Nylon net covers protected tobacco seedlings in nursery beds for 45 days. Ricinus communis and Helianthus annuus sown around the tobacco nursery bed as barrier crops attracted adult whiteflies and decreased the number found on tobacco.  相似文献   

16.
A whitefly-transmissible stock isolate of Indian tomato leaf curl geminivirus (ITmLCV) was cultured in graft-inoculated tomato plants and its particles purified from chloroform-clarified extracts in citrate buffer by precipitation with 70 g/litre polyethylene glycol, ultracentrifugation and sucrose density gradient centrifugation. Contaminating helical filaments were eliminated by banding in caesium sulphate gradients. ITmLCV particles had the shape typical for geminiviruses, measured c. 30 × 20 nm and contained a single major protein of estimated mol. wt c. 32 000. They reacted in immunosorbent electron microscopy with antisera to four other whitefly-transmitted geminiviruses. ITmLCV reacted with one out of 17 monoclonal antibodies specific for different epitopes in the particle protein of African cassava mosaic geminivirus and five or six out of 10 monoclonal antibodies to the particle protein of Indian cassava mosaic geminivirus. Virus isolates from tomato at nine locations in Karnataka State showed only slight differences in epitope profile, and isolates from four weed species in tomato fields were similar or identical to those from tomato.  相似文献   

17.
Since 1997 two distinct geminivirus species, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), have caused a similar yellow leaf curl disease in tomato, coexisted in the fields of southern Spain, and very frequently doubly infected single plants. Tomatoes as well as experimental test plants (e.g., Nicotiana benthamiana) showed enhanced symptoms upon mixed infections under greenhouse conditions. Viral DNA accumulated to a similar extent in singly and doubly infected plants. In situ tissue hybridization showed TYLCSV and TYLCV DNAs to be confined to the phloem in both hosts, irrespective of whether they were inoculated individually or in combination. The number of infected nuclei in singly or doubly infected plants was determined by in situ hybridization of purified nuclei. The percentage of nuclei containing viral DNA (i.e., 1.4% in tomato or 6% in N. benthamiana) was the same in plants infected with either TYLCSV, TYLCV, or both. In situ hybridization of doubly infected plants, with probes that discriminate between both DNAs, revealed that at least one-fifth of infected nuclei harbored DNAs from both virus species. Such a high number of coinfected nuclei may explain why recombination between different geminivirus DNAs occurs frequently. The impact of these findings for epidemiology and for resistance breeding concerning tomato yellow leaf curl diseases is discussed.  相似文献   

18.
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed.  相似文献   

19.
In 1989 to 1991, leaf curl disease was observed in cotton (Gossypium bar-badense cv. Local) grown in kitchen gardens in five districts in Karnataka State, India, and in 1994 it was recorded in G. hirsutum cv. Sharada in two districts. Symptoms consist of leaf curling, vein thickening, leaf enations, and stunting and distortion of plants. The disease is caused by cotton leaf curl virus (CLCuV-K), which was transmitted by the whitefly Bemisia tabaci to 24 plant species in six families. Hosts include bean (Phaseolus vulgaris), pepper, tobacco, tomato and several weeds, almost all of which developed leaf curl, with or without vein thickening. CLCuV-K was transmitted from cotton to cotton by adult B. tabaci after an acquisition access period of 1 h, could be inoculated in 5 min, had a minimum latent period of 8 h and was retained by viruliferous insects for up to 9 days. Female B. tabaci transmitted more frequently than males. CLCuV-K is a whitefly-transmitted geminivirus. It reacted with two out of 17 monoclonal antibodies (MAbs) raised to African cassava mosaic virus and five out of 10 MAbs raised to Indian cassava mosaic virus. CLCuV-K isolates from different locations in Karnataka had similar epitope profiles. As judged by these profiles, CLCuV-K is closely related to Indian tomato leaf curl virus from Karnataka, is distinguishable from several other whitefly-transmitted geminiviruses found in India and is still more distantly related to those, including cotton leaf crumple virus from the USA, found in other continents. CLCuV-K infected all cultivars tested of G. barbadense and one of six cultivars of G. hirsutum but none of G. arboreum or G. herbaceum.  相似文献   

20.
Selected monoclonal antibodies (MAbs), prepared to particles of African cassava mosaic or Indian cassava mosaic geminiviruses, detected three geminiviruses that occur in Europe: abutilon mosaic virus in Abutilon pictum ‘Thompsonii’, tobacco leaf curl virus in Lonicera japonica var. aureo-reticulata and tomato yellow leaf curl virus in Lycopersicon esculentum. All three viruses were detected in indirect ELISA by MAbs SCR 17 and SCR 20 but they were differentiated by their reactions with SCR 18 and SCR 23. Tobacco leaf curl virus was detected only when reducing agents were included in the leaf extraction medium. Inclusion of sodium sulphite slightly improved detection of tomato yellow leaf curl virus but reducing agents were not needed for detection of abutilon mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号