首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Q Feng  S G Sligar 《Biochemistry》1991,30(42):10150-10155
The structure and stability of apocytochrome b562 were explored using absorption and circular dichroism spectroscopic methods. The polypeptide chain retains a well-defined structure when the prosthetic heme group is removed from cytochrome b562. Circular dichroism measurements estimate 60% helicity for apocytochrome b562, compared with 80% helicity found in holocytochrome b562. At low pH, apocytochrome b562 displays a midpoint pH of 2.9, while ferricytochrome b562 displays a midpoint pH of 2.3. The unfolding of the apoprotein by urea and heat can be well approximated by the two-state transition model. The stability of apocytochrome b562 is significantly reduced from that of the holoprotein. The free energy of stabilization (delta G degrees) and the midpoint transition temperature (Tm) for apocytochrome b562 are found to be 3.2 +/- 0.5 kcal/mol and 52.3 +/- 0.9 degrees C, respectively, compared with 6.6 +/- 0.5 kcal/mol and 67.2 +/- 0.5 degrees C for ferricytochrome b562. The smaller heat capacity change upon unfolding of apocytochrome b562 than that of ferricytochrome b562, estimated from the thermodynamic parameters, indicates that apocytochrome b562 possesses a smaller hydrophobic core than holocytochrome b562. Size-exclusion chromatography studies indicate that the apoprotein is slightly more extended in molecular dimension than ferricytochrome b562. The data suggest that apocytochrome b562 resembles a "molten globule" or a "collapsed form" of the holoprotein, in which secondary structure formation is largely complete while the global folding is either only partially complete or dynamically expanded.  相似文献   

2.
Mukhopadhyay K  Lecomte JT 《Biochemistry》2004,43(38):12227-12236
Conformational changes and long-range effects are often observed in proteins when they associate with their ligands. In many cases, these structural perturbations are essential to function, and they are the result of complex networks of interactions. Here we used cytochrome b(5), a protein that undergoes extensive structural rearrangement upon heme binding, to seek a relationship between affinity for the cofactor and extent of refolding induced by its binding. Three variants of the water-soluble domain of the rat microsomal protein were chosen to affect the stability of the apoprotein or the holoprotein. Sequence alterations were introduced in the heme binding loop (type I mutations, D60R and (55)TENFED --> (55)TEPFEED, or PE), which is largely unstructured in the apoprotein state, and in the folded core of the apoprotein (type II mutation, P81A). Thermal and chemical denaturation experiments and heme transfer experiments were performed on these proteins. Type I mutations left the thermodynamic stability of the apoprotein unchanged. The first mutation (D60R) stabilized the holoprotein in a probable manifestation of enhanced helical propensity or improved electrostatic interactions. The second mutation (PE) decreased heme affinity and holoprotein stability in concert. For this protein, heme transfer experiments could be used to estimate the rate constant of heme loss from each of the heme orientational isomers. In contrast, the type II mutation resulted in a marked destabilization of the apoprotein but an intermediate effect on the holoprotein stability and heme affinity. These data supported that heme affinity could be modulated by the apoprotein stability and by specific residues remote from the heme binding site.  相似文献   

3.
Horseradish peroxidase A1 thermal stability was studied by steady-state fluorescence, circular dichroism and differential scanning calorimetry at pH values of 4, 7 and 10. Changes in the intrinsic protein probes, tryptophan fluorescence, secondary structure, and heme group environment are not coincident. The T(m) values measured from the visible CD data are higher than those measured from Trp fluorescence and far-UV CD data at all pH values showing that the heme cavity is the last structural region to suffer significant conformational changes during thermal denaturation. However ejection of the heme group leads to an irreversible unfolding behavior at pH 4, while at pH 7 and 10 refolding is still observed. This is putatively correlated with the titration state of the heme pocket. Thermal transitions of HRPA1 showed scan rate dependence at the three pH values, showing that the denaturation process was kinetically controlled. The denaturation process was interpreted in terms of the classic scheme, N<-->U-->D and fitted to far-UV CD ellipticity. A good agreement was obtained between the experimental and theoretical T(m) values and percentages of irreversibility. However the equilibrium between N and U is probably more complex than just a two-state process as revealed by the multiple T(m) values.  相似文献   

4.
The water-soluble domain of rat hepatic cytochrome b(5) undergoes marked structural changes upon heme removal. The solution structure of apocytochrome b(5) shows that the protein is partially folded in the absence of the heme group, exhibiting a stable module and a disordered heme-binding loop. The quality of the apoprotein structure in solution was improved with the use of heteronuclear NMR data. Backbone amide hydrogen exchange was studied to characterize cooperative units in the protein. It was found that this criterion distinguished the folded module from the heme-binding loop in the apoprotein, in contrast to the holoprotein. The osmolyte trimethylamine N-oxide (TMAO) did not affect the structure of the apoprotein in the disordered region. TMAO imparted a small stabilization consistent with an unfolded state effect correlating with the extent of buried surface area in the folded region of the native apoprotein. The failure of the osmolyte to cause large conformational shifts in the disordered loop supported the view that the specificity of the local sequence for the holoprotein fold was best developed with the stabilization of the native state through heme binding. To dissect the role of the heme prosthetic group in forcing the disordered region into the holoprotein conformation, the axial histidine belonging to the flexible loop (His63) was replaced with an alanine, and the structural properties of the protein with carbon-monoxide-ligated reduced iron were studied. The His63Ala substitution resulted in a protein with lower heme affinity but nevertheless capable of complete refolding. This indicated that the coordination bond was not necessary to establish the structural features of the holoprotein. In addition, the weak binding of the heme in this protein resulted in conformational shifts at a location distant from the binding site. The data suggested an uneven distribution of cooperative elements in the structure of the cytochrome.  相似文献   

5.
The water-soluble domain of rat microsomal cytochrome b(5) is a convenient protein with which to inspect the connection between amino acid sequence and thermodynamic properties. In the absence of its single heme cofactor, cytochrome b(5) contains a partially folded stretch of 30 residues. This region is recognized as prone to disorder by programs that analyze primary structures for such intrinsic features. The cytochrome was subjected to amino acid replacements in the folded core (I12A), in the portion that refolds only when in contact with the heme group (N57P), and in both (F35H/H39A/L46Y). Despite the difficulties associated with measuring thermodynamic quantities for the heme-bound species, it was possible to rationalize the energetic consequences of both types of replacements and test a simple equation relating apoprotein and holoprotein stability. In addition, a phenomenological relationship between the change in T(m) (the temperature at the midpoint of the thermal transition) and the change in thermodynamic stability determined by chemical denaturation was observed that could be used to extend the interpretation of incomplete holoprotein stability data. Structural information was obtained by nuclear magnetic resonance spectroscopy toward an atomic-level analysis of the effects.  相似文献   

6.
Absorbance-detected thermal denaturation studies of the C102T variant of Saccharomyces cerevisiae iso-1-ferricytochrome c were performed between pH 3 and 5. Thermal denaturation in this pH range is reversible, shows no concentration dependence, and is consistent with a 2-state model. Values for free energy (delta GD), enthalpy (delta HD), and entropy (delta SD) of denaturation were determined as functions of pH and temperature. The value of delta GD at 300 K, pH 4.6, is 5.1 +/- 0.3 kcal mol-1. The change in molar heat capacity upon denaturation (delta Cp), determined by the temperature dependence of delta HD as a function of pH (1.37 +/- 0.06 kcal mol-1 K-1), agrees with the value determined by differential scanning calorimetry. pH-dependent changes in the Soret region indicate that a group or groups in the heme environment of the denatured protein, probably 1 or both heme propionates, ionize with a pK near 4. The C102T variant exhibits both enthalpy and entropy convergence with a delta HD of 1.30 kcal mol-1 residue-1 at 373.6 K and a delta SD of 4.24 cal mol-1 K-1 residue-1 at 385.2 K. These values agree with those for other single-domain, globular proteins.  相似文献   

7.
c-Type cytochromes are located partially or completely in the periplasm of gram-negative bacteria, and the heme prosthetic group is covalently bound to the protein. The cytochrome c maturation (Ccm) multiprotein system is required for transport of heme to the periplasm and its covalent linkage to the peptide. Other cytochromes and hemoglobins contain a noncovalently bound heme and do not require accessory proteins for assembly. Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide accumulation in Escherichia coli was heme dependent, with very low levels found in heme-deficient cells. However, apoproteins of the periplasmic E. coli cytochrome b562 or the cytosolic Vitreoscilla hemoglobin (Vhb) accumulated independently of the heme status. Mutation of the heme-binding cysteines of cytochrome c550 or the absence of Ccm also resulted in a low apoprotein level. These levels were restored in a degP mutant strain, showing that apocytochrome c550 is degraded by the periplasmic protease DegP. Introduction of the cytochrome c heme-binding motif CXXCH into cytochrome b562 (c-b562) resulted in a c-type cytochrome covalently bound to heme in a Ccm-dependent manner. This variant polypeptide was stable in heme-deficient cells but was degraded by DegP in the absence of Ccm. Furthermore, a Vhb variant containing a periplasmic signal peptide and a CXXCH motif did not form a c-type cytochrome, but accumulation was Ccm dependent nonetheless. The data show that the cytochrome c heme-binding motif is an instability element and that stabilization by Ccm does not require ligation of the heme moiety to the protein.  相似文献   

8.
In order to analyze the secondary structures of protein molecules adsorbed on gold surfaces, circular dichroism (CD) spectra were measured and the secondary structure contents of protein ultra-thin films were estimated quantitatively. A disulfide group was introduced to cytochrome b(562) (cyt.b562), which is a water-soluble b-type heme protein. The cyt.b562 molecules self-assembled to form an ultra-thin protein film both on a gold substrate modified with 2,2(')-dithiodiacetic acid and on a bare gold surface. CD measurements were carried out both in solution and in air, and these results were compared. The protein denaturation was partially prevented, not only in solution but also in air, by both the modification of the substrate and the introduction of the anchor group to the protein molecule. The secondary structure contents of ultra-thin protein films on flat gold surfaces were observed for the first time both in solution and in air by CD spectra.  相似文献   

9.
The cytochrome o complex of the Escherichia coli aerobic respiratory chain is a ubiquinol oxidase. The enzyme consists of at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and contains two heme b prosthetic groups (b555 and b562) plus copper. The sequence of the cyo operon, encoding the subunits of the oxidase, reveals five open reading frames, cyoABCDE. This paper describes results obtained by expressing independently cyoA and cyoB in the absence of the other subunits of the complex. Polyclonal antibodies which react with subunits I and II of the purified oxidase demonstrate that cyoA and cyoB correspond to subunit II and subunit I, respectively, of the complex. These subunits are stably inserted into the membrane when expressed. Furthermore, expression of cyoB (subunit I) results in elevated heme levels in the membrane. Reduced-minus-oxidized spectra suggest that the cytochrome b555 component is present but that the cytochrome b562 component is not. This heme component is shown to bind to CO, as it does in the intact enzyme. Hence, subunit I alone is sufficient for the assembly of the stable CO-binding heme component of this oxidase.  相似文献   

10.
The mitochondrial gene for the cytochrome b of Complex III has been cloned from a mouse L-cell mutant with increased resistance to 2-n-heptyl-4-hydroxyquinoline-N-oxide and other inhibitors which block reactions at the b562 heme group. Nucleotide sequencing revealed that this gene contained a G:A transition on the coding strand at position 14,830. At the amino acid level, this mutation results in the substitution of an aspartic acid residue for a conserved glycine at position 231 of cytochrome b. Based upon current models for the secondary structure of cytochrome b, the altered amino acid lies in close proximity to one of the invariant histidine residues involved in binding the heme groups. Combining this result with the previous biochemical studies of this mutant, we hypothesize that the insertion of this highly charged side chain alters the conformation around the b562 heme group such that 2-n-heptyl-4-hydroxyquinoline-N-oxide and the other inhibitors of this group have reduced access to the inhibitor binding domain.  相似文献   

11.
The properties of the six histidine residues of apocytochrome b5 have been investigated by using one- and two-dimensional proton NMR spectroscopy in order to probe the structure remaining after heme removal. Spectral assignments were arrived at by analyzing proton NOE connectivities, comparing them to those observed in the holoprotein, and inspecting the X-ray structure of the latter species. Each histidine residue was studied for its pKa value, interaction with the relaxation agent copper nitrilotriacetic acid, and reactivity toward bromoacetic acid. The four histidines which are not coordinated to the iron atom in the holoprotein (His-15, -26, -27, and -80) display in the major conformer of the apoprotein the same characteristic properties as in the holoprotein. Three of them are involved in specific interactions with the rest of the structure: His-15 and His-80 participate in hydrogen bonds, and His-27 is influenced by the nearby C-terminal segment. His-26 is the most exposed to the solvent. His-63 and His-39, which are located in the heme binding site, have distinct pKa values; they are affected differently by the copper agent and exhibit comparable reactivity toward bromoacetic acid, albeit milder than that of His-26. The results show that the heme binding residues are clearly distinguishable by their physicochemical properties and that several elements of native holoprotein structure are in place in the apoprotein. It is proposed that the structural influence of the heme is localized and that the amino- and carboxy-terminal segments form a structural unit providing stability to the apoprotein and supporting a fluctuating, partially folded binding site.  相似文献   

12.
M T Fisher 《Biochemistry》1991,30(41):10012-10018
The thermal stabilities of ferri- and ferrocytochrome b562 were examined. Thermally induced spectral changes, monitored by absorption and second-derivative spectroscopies, followed the dissociation of the heme moiety and the increased solvation of tyrosine residue(s) located in close proximity to the heme binding site. All observed thermal transitions were independent of the rate of temperature increase (0.5-2 degrees C/min), and the denatured protein exhibited partial to near-complete reversibility upon return to ambient temperature. The extent of renaturation of cytochrome b562 is dependent on the amount of time the unfolded conformer is exposed to temperatures above the transition temperature, Tm. All thermally induced spectra changes fit a simple two-state model, and the thermal transition was assumed to be reversible. The thermal transition for ferrocytochrome b562 yielded Tm and van't Hoff enthalpy (delta HvH) values of 81.0 degrees C and 137 kcal/mol, respectively. In contrast, Tm and delta HvH values obtained for the ferricytochrome were 66.7 degrees C and 110 kcal/mol, respectively. The estimated increase in the stabilization free energy at the Tm of ferricytochrome b562 following the one-electron reduction to the ferrous form, where delta delta G = delta Tm delta Sm [delta Sm = 324 cal/(K.mol), delta Tm = 14.3 degrees C] [Becktel, W. J., & Schellman, J. A. (1987) Biopolymers 26, 1859-1877], is 4.6 kcal/mol.  相似文献   

13.
The four-helix-bundle protein fold can be constructed from a wide variety of primary amino acid sequences. Proteins with this structure are excellent candidates for investigations of the relationship between folding mechanism and topology. The folding of cytochrome b(562), a four-helix-bundle heme protein, is hampered by heme dissociation. To overcome this complication, we have engineered a variant of cytochrome b(562) (cyt c-b(562)) featuring a c-type linkage between the heme and the polypeptide chain. The replacement of the native cyt b(562) leader sequence in this protein with that of a c-type cytochrome (cyt c(556)) led to high yields of fully matured and correctly folded cyt c-b(562). We have determined the X-ray crystal structure of cyt c-b(562) at 2.25 A and characterized its physical, chemical, and folding properties. These measurements reveal that the c-type linkage does not perturb the protein fold or reduction potential of the heme group. The covalent attachment of the porphyrin to the polypeptide does, however, produce a substantial change in protein stability and folding kinetics.  相似文献   

14.
Defects in heme biosynthesis have been associated with a large number of diseases, but mostly recognized in porphyrias, which are neurovisceral or cutaneous disorders caused by the accumulation of biosynthetic intermediates. However, defects in the maturation of heme groups that are part of the oxidative phosphorylation system are now also recognized as important causes of disease. The electron transport chain contains heme groups of the types a, b and c, all of which are directly involved in electron transfer reactions. In this article, we review the effect of mutations in enzymes involved in the maturation of heme a (the prosthetic group of cytochrome c oxidase) and heme c (the prosthetic group of cytochrome c) both in yeast and in humans. COX10 and COX15 are two genes, initially identified in Saccharomyces cerevisiae that have been found to cause infantile cytochrome c oxidase deficiency in humans. They participate in the farnesylation and hydroxylation of heme b, steps that are necessary for the formation of heme a, the prosthetic group required for cytochrome oxidase assembly and activity. Deletion of the cytochrome c heme lyase gene in a single allele has also been associated with a human disease, known as Microphthalmia with Linear Skin defects (MLS) syndrome. The cytochrome c heme lyase is necessary to covalently attach the heme group to the apocytochrome c polypeptide. The production of mouse models recapitulating these diseases is providing novel information on the pathogenesis of clinical syndromes.  相似文献   

15.
In order to illustrate the structural importance of proline-40 of cytochrome b5 (Cyt b5), the P40V mutant gene was constructed. Unfolding and refolding of Cyt b5 induced by methanol was investigated by means of the UV-visible spectrum, circular dichroism, and the fluorescence spectrum. Methanol denaturation of Cyt b5 is a cooperative process, that is, the heme group dissociates from the heme pocket accompanied by unfolding of the polypeptide chain both in the secondary and tertiary structures. Substitution of proline by valine reduces the stability of the mutant under methanol denaturation. The unfolding process is almost reversible by dilution. During refolding, the denatured polypeptide must be folded to a more ordered structure prior to the heme capture. Pro40 plays an important role in modulating the protein's stability. The role of tyrosine in the unfolding and refolding of Cyt b5 is evaluated for the first time. A mechanism of methanol denaturation is also proposed.  相似文献   

16.
In order to illustrate the structural importance of proline-40 of cytochrome b5 (Cyt b5), the P40V mutant gene was constructed. Unfolding and refolding of Cyt b5 induced by methanol was investigated by means of the UV-visible spectrum, circular dichroism, and the fluorescence spectrum. Methanol denaturation of Cyt b5 is a cooperative process, that is, the heme group dissociates from the heme pocket accompanied by unfolding of the polypeptide chain both in the secondary and tertiary structures. Substitution of proline by valine reduces the stability of the mutant under methanol denaturation. The unfolding process is almost reversible by dilution. During refolding, the denatured polypeptide must be folded to a more ordered structure prior to the heme capture. Pro40 plays an important role in modulating the protein's stability. The role of tyrosine in the unfolding and refolding of Cyt b5 is evaluated for the first time. A mechanism of methanol denaturation is also proposed.  相似文献   

17.
The expression of recombinant protein is essential for the investigation of the functions and properties of heme-containing protein as an electron carrier. For the expression of fully active recombinant protein, conversion of the expressed apoprotein into holoprotein is the most important and difficult problem. In this study, a system was developed for the production of heme-containing protein in a pure, recombinant holoprotein form, using the bovine cytochrome b5 tryptic fragment and Escherichia coli bacterioferritin as heterologous and homologous heme-containing model proteins, respectively. This system is based on the slow synthesis of recombinant apoprotein, which can maintain the balanced consumption of amino acids between protein synthesis and heme synthesis, so that the synthesized apoprotein continues to act as a heme sink. From a 1-1 culture, 15 mg of cytochrome b5 and 40 mg of bacterioferritin were purified as pure holoprotein forms. Our expression system provides a rapid and simple method for obtaining large quantities of the active holo-form of heme-containing proteins.  相似文献   

18.
Heme-linked proteins, such as cytochromes, are popular subjects for protein folding studies. There is the underlying question of whether the heme affects the structure of the denatured state by cross-linking it and forming other interactions, which would perturb the folding pathway. We have studied wild-type and mutant cytochrome b562 from Escherichia coli, a 106 residue four-alpha-helical bundle. The holo protein apparently refolds with a half-life of 4 micros in its ferrous state. We have analysed the folding of the apo protein using continuous-flow fluorescence as well as stopped-flow fluorescence and CD. The apo protein folded much more slowly with a half-life of 270 micros that was unaffected by the presence of exogenous heme. We examined the nature of the denatured states of both holo and apo proteins by NMR methods over a range of concentrations of guanidine hydrochloride. The starting point for folding of the holo protein in concentrations of denaturant around the denaturation transition was a highly ordered native-like species with heme bound. Fully denatured holo protein at higher concentrations of denaturant consisted of denatured apo protein and free heme. Our results suggest that the very fast folding species of denatured holo protein is in a compact state, whereas the normal folding pathway from fully denatured holo protein consists of the slower folding of the apo protein followed by the binding of heme. These data should be considered in the analysis of folding of heme proteins.  相似文献   

19.
J T Lecomte  M J Cocco 《Biochemistry》1990,29(50):11057-11067
The structural properties of the complex formed by apomyoglobin and protoporphyrin IX (des-iron myoglobin) were studied to probe the influence of iron-to-histidine coordination on the native myoglobin fold and the heme binding site geometry. Standard two-dimensional proton nuclear magnetic resonance spectroscopy methods were applied to identify porphyrin and protein signals. A pronounced spectral resemblance between carbonmonoxymyoglobin and des-iron myoglobin was noticed that could be exploited to assign a number of resonances by nuclear Overhauser spectroscopy. Protoporphyrin IX was determined to bind in the same orientation as the heme. Most residues in contact with the prosthetic group were found in the holomyoglobin conformation. Several tertiary structure features were also characterized near the protein termini. It was concluded that the protoporphyrin-apomyoglobin interactions are capable of organizing the binding site and the unfolded region of the apoprotein into the native holoprotein structure.  相似文献   

20.
The effect of urea concentration on the backbone solution structure of the cyanide derivative of ferric Caretta caretta myoglobin (at pH 5.4) is reported. By addition of urea, sequential and long-range nuclear Overhauser effects (NOEs) are gradually lost. By using the residual NOE constraints to build the molecular model, a picture of the unfolding pathway was obtained. When the urea concentration is raised to 2.2 M, helices A and B appear largely disordered; helices C, D, and F loose structural constraints at 3.0 M urea. At urea concentration >6 M, the protein appears to be fully unfolded, including the GH hairpin and helix E stabilizing the prosthetic group. Reversible and cooperative denaturation isotherms obtained by following NOE peaks are considerably different from those obtained by monitoring electronic absorption changes. The reversible and cooperative urea-dependent folding-unfolding process of C. caretta myoglobin follows the minimum three-state mechanism N long left and right arrow X long left and right arrow D, where X represents a disordered globin structure (occurring at approximately 4 M urea) that still binds the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号