首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transepithelial taurine fluxes determined in short-circuited monolayer cultures of flounder renal proximal cells in Ussing chambers revealed net taurine secretion. Both unidirectional secretory and reabsorptive taurine fluxes exhibited saturation kinetics contributed by two distinct saturable transepithelial taurine transport systems operating at different taurine concentration ranges. The taurine secretory system operating below 0. 5 mM had lower affinity but higher capacity than the reabsorptive system, whereas the one operating at high concentrations (0.5-3.0 mM) had higher affinity but the same capacity as the corresponding reabsorptive system. Exposure (2 h) of the cultures to hyposmotic medium in the presence of taurine increased taurine secretory flux twofold with no effect on the reabsorptive flux. The hyposmolality-induced increase in taurine secretion was associated with a decreased peritubular taurine efflux and a concurrent increased luminal taurine efflux; the latter occurred via a pathway that was not affected by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid but inhibited by probenecid. The culture response in hyposmotic medium mimics the in vivo response of the intact marine fish kidney to dilution.  相似文献   

2.
Transport of GABA from the perfused ventricular system of the cat   总被引:2,自引:1,他引:1  
Abstract— The transport of GABA was studied in anaesthetized cats undergoing ventriculo-cisternal perfusion with radioactive GABA. Steady-state clearance of GABA from the CSF was greater than that of other amino acids previously studied, and was saturated at lower substrate concentrations, with an apparent Kt of 5·4 × 10-5 M, after correcting for non-saturable transport. GABA clearance was inhibited by the inclusion of taurine or β-alanine in the perfusion fluid, but not by a number of the common neutral and acidic amino acids. Study of punch biopsies of brain tissue taken adjacent to the venticular system, at the completion of perfusions, showed accumulation of radioactive GABA in the tissue to values four times higher than those found in the perfusion fluid. Of the radioactivity which had been removed from the ventricular system, only 11 per cent remained in the brain at the completion of the perfusion. Excised cat choroid plexus showed a saturable uptake of GABA which was inhibited by inclusion of taurine, β-alanine, or β-guanidino propionic acid in the incubation medium.  相似文献   

3.
Abstract: Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl?-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 µM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl? was varied, a single saturation process with an average apparent equilibrium constant (KCl?) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, KNa+~54.8 mM). Analyses of the Na+- and Cl?-concentration dependence data suggest that at least two Na+ and one Cl? are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > β-alanine > l -diaminopropionic acid > guanidinoethane sulfonate > β-guanidinopropionic acid > chloroquine > γ-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4α-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

4.
Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region.  相似文献   

5.
A novel uptake system for the unusual sulfonated amino acid taurine was discovered in the prokaryote, encapsulated Staphylococcus aureus strain M. This strain has been shown previously to contain taurine in its capsular polysaccharide. Taurine uptake by whole cells incubated in buffer showed a saturable dependency upon Na+ and taurine uptake was itself a saturable process, stimulated by glucose, and markedly affected by temperature. No evidence was found for the inducibility of taurine uptake. In the presence of 10 mM NaCl Lineweaver-Burk plots revealed a Km of 42 μM and Vmax of 4.6 nmol/min per mg dry weight for taurine uptake at 37°C. Increasing concentrations of Na+ decreased the Km of the system and appeared to increase the Vmax. Of various other cations tested only Li+ supported marked taurine uptake. Excess unlabelled taurine did not cause efflux of radioactivity taken up. Taurine was taken up into cold trichloroacetic acid-soluble material and did not chromatograph as taurine, indicating rapid metabolism during or closely following uptake. Taurine uptake appeared to occur via a highly specific system because amino acids representing the major known groups of amino acid transport systems in S. aureus did not inhibit taurine uptake, and uptake was only slightly diminished by the structurally closely related compounds hypotaurine and 3-amino-1-propane sulfonic acid. Sulfhydryl group reagents, electron transport inhibitors, an uncoupler and inhibitors of Na+-linked transport processes inhibited taurine uptake. A variety of other metabolic inhibitors had little effect on taurine uptake.  相似文献   

6.
Characteristics of taurine transport in rat hepatocytes maintained in primary culture for 24 h (cultured hepatocytes) have been investigated. The uptake of [3H] taurine by cultured hepatocytes at 2 degrees C was unsaturable, whereas that at 37 degrees C consisted of unsaturable and saturable processes. The saturable transport system was sodium-dependent and consisted of two processes with low and with high affinities. The latter process (Km, 76.9 microM; Vmax, 0.256 nmole/mg protein/min; activation energy (EA), 37.8 kcal mol-1) was competitively inhibited by 2,4-dinitrophenol and ouabain, as well as by taurine analogues such as hypotaurine and guanidinoethyl sulphonate. The Vmax and EA values found in cultured hepatocytes at 37 degrees C were 6.0 and 6.8 times higher than those found in freshly isolated hepatocytes. These results indicate that taurine transport in hepatocytes in primary culture consisted of unsaturable, and saturable, sodium and energy-dependent carrier-mediated transport processes, respectively. The facilitation of the latter transport system by primary culture of hepatocytes is also suggested.  相似文献   

7.
About 92% of the taurine influx in flounder erythrocytes at physiological conditions in vitro (330 mosmol·l-1, 145 mmol·l-1 Na+, 0.30 mmol·l-1 taurine) is Na+-dependent. This influx is highly specific for taurine. The -amino compounds hypotaurine and -alanine were the only compounds which mimicked the inhibitory effect of taurine on influx of [14C]taurine, the former more than the latter. Counterexchange of taurine was also mediated by the taurine transporters. Reduction of osmolality per se did not affect the activity of these transporters. Non-linear regression analysis of the influx values revealed the presence of two different influx systems: a system with high affinity and low capacity and another with low affinity and high capacity. However, we cannot exclude the possibility that this influx of taurine was mediated by only one transporter which operated in different modes depending on the extracellular Na+ concentration. On the assumption that the Na+-dependent influx was mediated by two separate systems, the maximal velocity of the low capacity system was 2.55 nmol·g dry weight-1·min-1 at 145 mmol·ll-1 extracellular Na+. This capacity was about 50% lower than that of the high capacity system. The Michaelis constants were 0.013 and 1.34 mmol·l-1, respectively. Reduction of the extracellular Na+ concentration reduced maximal velocity and the affinity to taurine of both transport systems. At 10 mmol·l-1 Na+ or lower concentrations the high capacity system did not seem to operate. The activation method suggested that each taurine molecule transported by the high capacity system was accompanied by two Na+. The stoichiometry of the low capacity system was 1 taurine: 1 Na+. The Hill-coefficient for both transport systems was 1.00.Abbreviations cpm counts per minute - dw dry weight - GABA -amino-n-butyric acid - K m Michaelis constant - pK b basic dissociation constant - SD standard deviation - -ABA Dl--amino-n-butyric acid - V max maximal velocity - ww wet weight  相似文献   

8.
Transport of taurine has been demonstrated in capillary preparations from adult rat brains using [3H]taurine. Taurine transport is mediated by a saturable high-affinity system which is entirely dependent on sodium ions. The apparent maximal influx (Vmax) and half-saturation concentration (Km) corresponded to 1.06.10(-4) mumol/min per mg protein and 27.5 microM, respectively. Competition experiments in the presence of sodium ion showed that [3H]taurine uptake was strongly inhibited by 0.1 mM unlabeled structural analogues of taurine such as beta-alanine and hypotaurine as well as unlabeled taurine. gamma-Aminobutyric acid (GABA) (0.1 mM) inhibited the uptake of labeled taurine by 30%, whereas isethionic acid, L-methionine, L-2,4-diaminobutyric acid, glycine, L-cysteinesulfonic acid and cystamine did not exhibit any inhibitory effect. The results suggest that the Na+ gradient is the principal source of energy for taurine transport into isolated brain capillaries. This transport system may play an active role in the regulation of taurine concentration in the brain extracellular space.  相似文献   

9.
The effects of cations on taurine, hypotaurine and GABA uptake were studied in mouse brain slices under identical experimental conditions. The uptakes were all strictly sodium-dependent. The omission or excess of K+ inhibited similarly taurine, hypotaurine and GABA uptake. The effects of omission of Ca2+ or Mg2+ were less pronounced. In both normal-sodium and low-sodium media all uptakes were saturable, consisting of both low-and high-affinity transport components. TheK m constants for both low-and high-affinity transport components of hypotaurine and GABA increased in low-sodium medium, suggesting that sodium ions are necessary for their attachment to possible carrier sites in plasma membranes. In the case of taurine, however, the translation rate rather than the affinity of carrier sites was affected in Na+-free media. More than two sodium ions may be involved in the transport of one hypotaurine and one GABA molecule, whereas the coupling ratio between sodium and taurine was at least three. In its cation dependence hypotaurine uptake thus resembled more GABA uptake than taurine uptake.  相似文献   

10.
Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypo-osmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned that changes in taurine transporter activity also might accompany cell swelling to minimize re-accumulation of taurine from the extracellular space. Thus, we determined the kinetic and pharmacological characteristics of neuronal taurine transport and the response to osmotic swelling. Accumulation of radioactive taurine is strongly temperature dependent and occurs via saturable and non-saturable pathways. At concentrations of taurine expected in extracellular fluid in vivo, 98% of taurine accumulation would occur via the saturable pathway. This pathway obeys Michaelis-Menten kinetics with a Km of 30.0 +/- 8.8 microm (mean +/- SE) and Jmax of 2.1 +/- 0.2 nmol/mg protein min. The saturable pathway is dependent on extracellular sodium with an effective binding constant of 80.0 +/- 3.1 mm and a Hill coefficient of 2.1 +/- 0.1. This pathway is inhibited by structural analogues of taurine and by the anion channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and 5-nitro-2-(3 phenylpropylamino) benzoic acid (NPPB). NPPB, but not DIDS, also reduces the ATP content of the cell cultures. Osmotic swelling at constant extracellular sodium concentration reduces the Jmax of the saturable transport pathway by approximately 48%, increases Kdiff for the non-saturable pathway by 77%, but has no effect on cellular ATP content. These changes in taurine transport occurring in swollen neurons in vivo would contribute to net reduction of taurine content and resulting volume regulation.  相似文献   

11.
Two uptake systems for taurine transport in a rat hypothalamic crude synaptosomal preparation were identified. The true transport constants were, for the high-affinity uptake system,K m=240 M andV (maximum velocity)=400 nmol/g protein/min, and for the low-affinity uptake system.K m=5290 M and V=1640 nmol/g protein/min. The initial velocity of high-affinity taurine uptake by the crude synaptosomal preparation was studied as a function of sodium and taurine concentration. Hill plots were constructed from these data. The requirement of high-affinity taurine uptake on a sodium gradient was examined by utilizing monensin, and the metabolic poisons, 2,4-dinitrophenol and ouabain. The major findings are as follows: 1) One sodium ion is co-transported with each taurine molecule; 2) the high-affinity uptake process is driven by the sodium concentration gradient across the membrane; 3) sodium increases the maximal velocity rather than the affinity of the high-affinity taurine carrier for the taurine molecule; 4) one taurine molecule is transported per carrier for both the high- and low-affinity taurine uptake systems; and 5) high-affinity taurine uptake is an energy-dependent process.  相似文献   

12.
Cultured human lymphoblastoid cells take up taurine from the medium by two processes: 1) a temperature-dependent, Na+-dependent, saturable “active”-transport system and 2) diffusion. The active transport has properties similar to those reported for taurine transport by other tissues. Apparent Km is about 25 μM and Vmax about 7.2 pmol/min/106 cells; saturation occurs at 100 μM taurine. Uptake is competitively inhibited by the β-amino acids hypotaurine (50% inhibition at 44 μM) and β-alanine (50% at 152 μM), as measured at 50 μM taurine. Taurocyamine inhibits 50% at 260 μM. Chlorpromazine and imipramine are strong uncompetitive inhibitors, giving 50% inhibition at 26 μM and 115 μM, respectively; at these concentrations cellular viability per se is not affected. Ouabain inhibits 40–50% over a concentration range of 4–500 μM. Diffusion of taurine into the cells is proportional to concentration up to 20 mM. However, at the concentration of taurine in human plasma, 40–100 μM, active transport would provide 90% of the taurine taken up.  相似文献   

13.
The kinetics and specificity of taurine and -alanine uptake were studied in primary cultures of rat astrocytes under identical experimental conditions. The uptake consisted of nonsaturable penetration and saturable high-affinity transport that was strictly sodium dependent. The cells accumulated taurine more effectively than -alanine, both the affinity and uptake capacity being greater for taurine. Taurine uptake was competitively inhibited by -alanine and GABA, the former being more potent. Also, hypotaurine and 2-guanidinoethanesulphonic acid strongly reduced taurine uptake, but L-2,4-diaminobutyric acid had no significant effect. -Alanine uptake was also competitively inhibited by GABA, but the most potent inhibitors were hypotaurine and 2-guanidinoethanesulphonic acid.l-2,4-Diaminobutyric acid was moderately active. The uptake systems for taurine and -alanine were thus in principle similar, and they exhibited certain characteristics typical for a neurotransmitter amino acid. The inhibition studies further suggest the existence of only one common transport system for taurine, -alanine, and GABA in cultured primary astrocytes. The same uptake system may also be used for hypotaurine.  相似文献   

14.
Two sets of taurine receptors on rat heart sarcolemma have been identified. The high affinity taurine receptors (Kd=3.5×10?4M) show a non-cooperative binding profile while the low affinity taurine receptors exhibit positive cooperativity. Taurine binding to the membrane exhibits a typical bell shaped pH profile with maximum binding occurring at pH 8.0. The maximum temperature for binding is 24°C. The effect of various taurine analogues on the receptors was investigated. It was found that binding is prevented by hypotaurine and inhibited to a lesser degree by isethionic acid and cysteine sulfinic acid, while β-alanine was found to increase taurine binding. The effect of several hydrolytic enzymes was also examined and it was shown that several proteases and phospholipase C inhibit binding. The results indicate that the taurine receptors are membrane bound proteins in a phospholipid environment.  相似文献   

15.
The time course of creatine influx or efflux as measured in populations of red cells or red cell ghosts with normal age distribution does not follow simple two-compartment kinetics. This suggests that the contributions of individual cells to transport as measured in the populations as a whole are not uniform. In agreement with this inference, fractionation of red cell populations with respect to cell age shows that transport in young cells is considerably faster than in old cells.The dependence of creatine transport on creatine concentration in the medium follows an equation that can be interpreted to represent a super-imposition of a saturable component (apparent Km = 0.02 mM) and another component that cannot be saturated up to a creatine concentration of 5.0 mM. In contrast to the non-saturable component, the saturable component depends on the energy metabolism of the cell and can be inhibited by β-guanidinopropionic acid and the proteolytic enzyme pronase. This latter finding suggests that the saturable component represents active transport that is mediated by a transport protein. The non-saturable component is little, if at all, dependent on cell age while the saturable component is higher in young cells than in old cells. Phloretin inhibits both components of creatine flux, but the maximal inhibition that can be achieved at high concentration is only 70–80%.Under the experimental conditions used for the study of creatine transport, creatinine equilibration between cells and medium follows the kinetics expected for a steady-state two-compartment system. Creatinine flux is proportional to creatine concentration over the concentration range studied (up to 5 mM). It cannot be inhibited by β-guanidinopropionic acid or pronase.  相似文献   

16.
Developmental patterns and pharmacological and biochemical properties of taurine transport system were investigated using developing primary cultured neurons prepared from mouse cerebral cortex by trypsin treatment. [3H]Taurine was incorporated into neurons via a high-affinity transport system of which the Km value as well as the Vmax value increased during neuronal development in vitro. This transport system was also inhibited by sodium withdrawal from incubation medium and exposures for 15 h to several metabolic inhibitors such as 2,4-dinitrophenol and monoiodoacetate. In addition, [3H]taurine uptake in both neurons cultured for 3 and 14 days was competitively inhibited by beta-alanine, guanidinoethanesulfonate and hypotaurine. Cysteic acid and cysteine sulfinic acid, metabolic intermediates produced in the process of taurine biosynthesis in the brain from cysteine, induced significant reductions in [3H]taurine uptake in both types of cultured neurons, while cysteine, isethionic acid, cysteamine and cystamine exhibited no alterations in [3H]taurine transport. Moreover, non-competitive inhibition of [3H]taurine uptake by cysteic acid was observed in both neurons. These results clearly indicate that taurine uptake was mediated by the sodium- and energy-dependent transport system with high affinity in 14-day-old neurons as well as neurons cultured for 3 days and that both the Km and Vmax values of this transport system increase during neuronal development in vitro. The results described above suggest that the decrease in taurine content observed in developing brain is unlikely to be due to alteration in the capacity of the taurine transport system during neuronal development.  相似文献   

17.
Uptake of [35S]taurine was studied in parallel on glial and neuronal cells maintained in continuous culture, including transformed neuronal cells. Both glial and neuronal taurine uptake systems were concentrative, highly sodium-dependent and inhibited by closely related structural analogues such as hypotaurine, β-alanine and GABA. Strychnine was found to be a potent inhibitor of taurine uptake, especially in the glial cells, while parachloromercuriphenylsulphonate was more efficient on the neuronal clones. In contrast with uptake by neuroblastoma cells, the glial transport was dependent on the presence of calcium in the incubation medium.  相似文献   

18.
Milk taurine plays a critical role in neonatal development. Taurine uptake in lactating sow mammary tissue has not been characterized previously. The kinetic properties, ion dependence and substrate specificity of taurine uptake were characterized in mammary tissue collected from lactating sows at slaughter. Tissue explants were incubated in an isosmotic physiologic buffer with [3H]taurine tracer to measure taurine uptake. Taurine uptake was dependent upon the presence of extracellular sodium and chloride ions, which is consistent with the co-transport of sodium and chloride with taurine. Uptake was not dependent upon ion exchange mechanisms or upon furosemide-sensitive ion co-transport. Taurine uptake was saturable and exhibited an apparent Km of 20 μM and a Vmax of 386 μmol/kg cell water/30 min. Substrate specificity studies indicated a strong interaction of β-amino acids with the taurine transport system. Taurine transport in lactating sow mammary tissue is therefore a high affinity, sodium-dependent mechanism specific for β-amino acids, and is analogous to sodium-dependent taurine uptake in other tissues. The high affinity and high specificity of the taurine uptake system allows for concentration of taurine within the mammary cell and is ultimately responsible for provision of taurine required for neonatal development.  相似文献   

19.
Intracellular microelectrodes, fluorescence imaging, and radiotracer flux techniques were used to investigate the physiological response of the retinal pigment epithelium (RPE) to the major retinal inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). GABA is released tonically in the dark by amphibian horizontal cells, but is not taken up by the nearby Muller cells. Addition of GABA to the apical bath produced voltage responses in the bullfrog RPE that were not blocked nor mimicked by any of the major GABA-receptor antagonists or agonists. Nipecotic acid, a substrate for GABA transport, inhibited the voltage effects of GABA. GABA and nipecotic acid also inhibited the voltage effects of taurine, suggesting that the previously characterized beta- alanine sensitive taurine carrier also takes up GABA. The voltage responses of GABA, taurine, nipecotic acid, and beta-alanine all showed first-order saturable kinetics with the following Km's: GABA (Km = 160 microM), beta-alanine (Km = 250 microM), nipecotic acid (Km = 420 microM), and taurine (Km = 850 microM). This low affinity GABA transporter is dependent on external Na, partially dependent on external Cl, and is stimulated in low [K]o, which approximates subretinal space [K]o during light onset. Apical GABA also produced a significant conductance increase at the basolateral membrane. These GABA-induced conductance changes were blocked by basal Ba2+, suggesting that GABA decreased basolateral membrane K conductance. In addition, the apical membrane Na/K ATPase was stimulated in the presence of GABA. A model for the interaction between the GABA transporter, the Na/K ATPase, and the basolateral membrane K conductance accounts for the electrical effects of GABA. Net apical-to-basal flux of [3H]-GABA was also observed in radioactive flux experiments. The present study shows that a high capacity GABA uptake mechanism with unique pharmacological properties is located at the RPE apical membrane and could play an important role in the removal of GABA from the subretinal space (SRS). This transporter could also coordinate the activities of GABA and taurine in the SRS after transitions between light and dark.  相似文献   

20.
The kinetics and specificity of GABA and taurine uptake were studied in the bullfrog sympathetic ganglia. GABA uptake system consisted of simple saturable component and taurine uptake system consisted of two saturable components exclusive of non-saturable influx. Taurine unaffected GABA uptake while GABA inhibited taurine uptake competitively with theK i/Km ratio of 38. GABA (5.14 M) uptake was inhibited by -aminovaleric acid and slightly by 2,4-diaminobutyric acid (5 mM, each) among ten structural analogs. Taurine uptake under high-affinity conditions was most strongly suppressed by hypotaurine and -alanine competitively with theK i/Km ratio of 1.0 and 1.9, respectively. Autoradiography showed that glial cells were heavily labeled by both [3H]GABA and [3H]taurine. These results suggest that GABA is transported by a highly specific carrier system distinct from the taurine carrier and that taurine, hypotaurine, and -alanine may share the same high-affinity carrier system in the glial cells of the bullfrog sympathetic ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号