首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Claudia Sorlini 《Aerobiologia》1993,9(2-3):109-115
Summary In this review, sources of microbial contamination of air, factors affecting airborne spores survival, conditions that determine their composition and sampling methods are considered. The relation between airborne microorganisms and microorganisms colonizing surfaces of art works is also analyzed. Finally some advanced methods to detect and identify microorganisms responsible for alteration are suggested.  相似文献   

2.
3.
The aim of this work was to determine the genera or species composition and the number of colony forming units of airborne bacteria and fungi, respectively, in two salt mines in Poland “Wieliczka” (Lesser Poland) and “Polkowice–Sieroszowice” (Lower Silesia). Both of them are working environments characterized by extreme conditions, and additionally “Wieliczka,” officially placed on the UNESCO World Heritage Sites’ list, plays a role of tourist attraction. There are also some curative chambers located in this mine. Air samples were taken once in December 2015, between 6:00 a.m. and 9:00 a.m. There were nine measurement points located about 200 m underground in “Wieliczka” and six measurement points located in the working shafts about 400 m underground in “Polkowice–Sieroszowice.” The total volume of each air sample was 150 L. Air samples, collected in individual measurement points of both salt mines, were inoculated on two microbiological media: potato dextrose agar and tryptic soy agar using the impact method. We identified 10 and 3 fungal genera in the “Wieliczka” Salt Mine and in “Polkowice–Sieroszowice,” respectively. The most common were fungi of the Penicillium genus. In both mines, the Gram-positive bacteria of genus Micrococcus were detected most frequently. Among identified microorganisms, there were neither pathogenic fungi nor bacteria. The most prevalent microorganisms detected in indoor air were Gram-positive cocci, which constituted up to 80% of airborne microflora. Our results showed that microorganisms recorded in the air samples are not a threat to workers, tourists or patients. Neither pathogens nor potentially pathogenic microorganisms, listed as BSL-2, BSL-3 or BSL-4, were detected. The microbes identified during our analysis commonly occur in such environments as the soil, water and air. Some of the detected bacteria are component of natural microflora of human skin and mucous membranes, and they can cause only opportunistic infections in individuals depending on their health condition.  相似文献   

4.
Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments.  相似文献   

5.
We have recently developed a new personal sampler and demonstrated its feasibility for detection of viable airborne microorganisms including bacteria, fungi and viruses. To accelerate the time-consuming analytical procedure involving 2-5 days of biological testing, we employed a real-time PCR protocol in conjunction with the personal sampler for collection of airborne viruses. The advantage of this approach is that if the presence of a particular pathogen in the air is detected by the PCR, the remaining collecting liquid can be further analysed by more time-consuming biological methods to estimate the number of airborne infectious/live microorganisms. As sampling of bioaerosols in natural environments is likely to be associated with substantial contamination by a range of microorganisms commonly existing in an ambient air, an investigation of the specificity of detection by targeted PCR analysis is required. Here we present the results of the study on the detection of Influenza virus in the ambient air contaminated with high concentrations of bacteria and fungi using real-time PCR protocol. The combined sampling PCR detection method was found to be fully feasible for the rapid ( approximately 2.5 h) and highly specific (no cross-reactivity) identification of the labile airborne virus in the air containing elevated concentrations of other microorganisms.  相似文献   

6.
The study characterized the sessile microbial communities on mortar and stone in Milan University's Richini's Courtyard and investigated the relationship between airborne and surface-associated microbial communities. Active colonization was found in three locations: green and black patinas were present on mortar and black spots on stone. Confocal laser scanning microscopy, scanning electron microscopy and culture-independent molecular methods revealed that the biofilm causing deterioration was dominated by green algae and black fungi. The mortar used for restoration contained acrylic and siloxane resins that could be used by microorganisms as carbon and energy sources thereby causing proliferation of the biofilm. Epifluorescence microscopy and culture-based methods highlighted a variety of airborne microflora. Bacterial and fungal counts were quantitatively similar to those reported in other investigations of urban areas, the exception being fungi during summer (1–2 orders of magnitude higher). For the first time in the cultural heritage field, culture-independent molecular methods were used to resolve the structure of airborne communities near discoloured surfaces, and to investigate the relationship between such communities and surface-associated biofilms.  相似文献   

7.
Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar. Variables in the MF samplers, such as pore size, relative humidity, and flow rates, have been studied, but no effect was noted on recovery. The results show that the MF method could be used to estimate the number and types of microorganisms found in the air.  相似文献   

8.
The present paper reports the results of a bacteriological and mycological monitoring carried out on the airborne microflora of the Sistine Chapel. The general aim of the study was to evaluate the impact of the flow of visitors, as well seasonal effects, on the qualitative and quantitative variations of microorganisms. Two sampling campaigns were carried out in May and November 1997. A Surface Air System (SAS) sampler (active system) and a sedimentation based sampler (passive system), supported by an original plinth, were used. Temperature, humidity and carbon dioxide were detected. VITEK SYSTEMS jr. for Staphylococcus spp. and microscopic observation for microfungi were the identification methods. In spite of the conditioning and filtration air system, initial results with both samplers, show a positive correlation between the airborne microorganisms and presence and number of visitors. The SAS samples showed higher microbial load, for both bacteria and fungi, than the passive ones, but the epidemiological meaning of the differently collected data varies. The increase during visiting hours of human Staphylococcus spp. is stronger than the airborne bacterial load increase. The microfungi most frequently isolated were Cladosporium spp. and Penicillium spp. These preliminary data underline the significance of the survey for the protection of such a precious environment, and encourage the Authors to continue the ongoing monitoring. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Historic limestone materials in urban environments are continually exposed to air pollutants, including sulfur compounds and hydrocarbons. We investigated the effects of air pollution on the biofilm microflora of historic limestone gravestones located at two locations Massachusetts, USA. Our data showed that the culturable populations of chemolithotrophic and heterotrophic bacteria, and fungi were suppressed in the polluted habitat comparing with the unpolluted location. The diversity of the microflora was also reduced in the surface biofilms on gravestones in the city contaminated by air pollution. However, both the sulfur-oxidizing and hydrocarbon-utilizing microflora were enriched in the biofilms exposed to air pollution. In a laboratory study, low concentrations of the polluting chemicals stimulated growth of these bacteria, and resulted in rapid acid production. Scanning electron microscopy demonstrated that the biofilms of both the sulfur-oxidizing bacteria and the hydrocarbon-degrading microflora penetrated into the limestone. The enrichment of sulfur- and hydrocarbon-utilizing bacteria in the biofilms may contribute to dissolution of the stone. However, further research is required to determine the effects of specific metabolites of these microorganisms on stone deterioration.  相似文献   

10.
Cultivation-based microbiological methods are a gold standard for monitoring of airborne micro-organisms to determine the occupational exposure levels or transmission paths of a particular infectious agent. Some highly contagious microorganisms are not easily culturable but it is becoming evident that cultivation and molecular methods are complementary and in these cases highly relevant. We report a simple and efficient method for sampling and analyzing airborne bacteria with an impactor-type high-flow-rate portable air sampler, currently used for monitoring culturable bacteria or fungi. A method is reported for extraction of nucleic acids from impacted cells without prior cultivation and using agarose as a sampling matrix. The DNA extraction efficiency was determined in spiked samples and, samples taken from a wastewater treatment plant and an alpine area. The abundance, diversity and quantity of total bacteria were analysed by a quantitative polymerase chain reaction, and by construction and analysis of clone libraries. The method does not interfere with downstream PCR analysis and can cover the gap between traditional culture and molecular techniques of bioaerosol monitoring.  相似文献   

11.
A microbiological examination of the air has been carried out inside the Moscow Kremlin Cathedrals. Comparison studies on concentrations of airborne microorganisms were performed in different indoor environments -- with and without air-conditioning system, with many and without visitors. The highest values were found indoors with great public attendance and where no air-conditioning system was available. The Gram-positive bacteria were predominant in the air whereas the Gram-negative ones mainly were found on the surface of walls and of stone objects. The majority of airborne microorganisms were capable of producing acid.  相似文献   

12.
Most studies focusing on detecting microorganisms in air by polymerase chain reaction (PCR) have used a liquid impinger to sample bioaerosols, mainly because a liquid sample is easy to be processed by PCR analysis. Nevertheless, the use of multiple-hole impactors for the analysis of bioaerosols by PCR has not been reported despite its great utility in culture analysis. In this study we have modified the impaction onto an agar surface sampling method to impaction onto a liquid medium using the MAS-100 air sampler (Merck) (single-stage multiple-hole impactor). To evaluate the recovery of airborne microorganisms of both sampling methods, a suspension containing Escherichia coli was artificially aerosolized and bioaerosols were collected onto Tergitol-7 agar and phosphate-buffered saline (PBS) with the MAS-100. A linear regression analysis of the results showed a strong positive correlation between both sampling methods (r = 0.99, slope 0.99, and y intercept 0.07). Afterwards, the method of impingement into a liquid medium was used to study airborne Legionella pneumophila by PCR. A total of 64 samples were taken at a wastewater treatment plant, a chemical plant, and an office building and analyzed by culture and PCR. Results showed that three samples were positive both by PCR and plate culture, and that nine samples negative by plate culture were positive by PCR, proving that L. pneumophila was present in bioaerosols from these three different environments. The results demonstrate the utility of this single-stage multiple-hole impactor for sampling bioaerosols, both by culture and by PCR.  相似文献   

13.
Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.  相似文献   

14.
Summary The processes of biodeterioration on mural paintings have often been discussed, whereas the causes of contamination have seldom been examined.Many microorganisms responsible for the biodeterioration of paintings are of airborne origin. It follows that an investigation on the aerial microbial concentration and air movements in painted indoors is very useful.This paper reviews the literature of mural painting biodeterioration and the aerobiological studies of painted indoors. Hypogean environments, for their particular microclimatic conditions, are not considered.The fungal species most frequently found in the biodeterioration of wall-paintings are reported, as well as comparisons of surface contamination and aerobiological investigation.This review shows the necessity of finding the best sampling methodologies for cultural heritage studies. The control of airborne contamination and proper sampling methods are highly important in determining treatment strategies for the conservation and prevention of microbial attack on painted surfaces.  相似文献   

15.
Three different methods were used for the monitoring of airborne microorganisms: (1). Cultivation of microbes trapped in a single-stage biological impactor directly on a solid agar nutrient medium (meat-pepton agar, Sabouraud's agar, blood agar) in Petri dishes. The repeated yearly course of concentrations of cultivable organisms, or colony-forming units (CFU), was obtained by long-run measurements. (2) Aeresol was trapped by impact on membrane filters, and the microorganisms were cultivated by placing the filters on the agar media as above. (3) Direct microorganism counting in a fluorescence microscope; air was sampled in a four-stage impactor where the aerosol was trapped on microscope slides, and the microorganisms were subsequently stained with fluorescent dyes (fluorescein diacctate, 4;6-diamidino-2-phenylindole and, particular, ethidium bromide).

The highest microorganism counts were obtained by using the fluorescence method, the direct cultivation method gave counts an order of magnitude lower, and the method of cultivation on filters gave values approximately 10 times lower than the conventional cultivation.

High variations in the airborne CFU concentrations over the year were observed in Prague. Over the winter season the variations in the amounts of airborne bacteria and other micromycetes as well as the amounts themselves were lower than in the remaining seasons. In the spring and in the summer, the concentrations of yeasts and other micromycetes were highest, whereas in the autumn the concentrations of the microorganisms decreased. Among the bacteria cultivated form the airborne aerosol, the genera Micrococcus, Bacillus, Neisseria and Corynebacterium predominated. The prevailing genera of micromycetes were Penicillium, Aspergillus and Cladosporium.

The concentrations of microorganisms in free air were also affected by the local weather conditions, temperature in particular, the overall air pollution by aerosols was of minor importance in this respect.  相似文献   

16.
The biological colonization of rocks in the Cave of Bats (Cueva de Los Murciélagos, Zuheros, Spain) was studied in order to reveal the diversity of microorganisms involved in the biofilm formation. The culturable, metabolically active fraction of biodeteriogens present on surfaces was investigated focusing on morphological, ultrastructural, and genetic features, and their presence related to the peculiar environmental conditions of the underground site. PCR-ITS analysis and 16S rDNA sequences were used to clusterize and characterize the isolated strains. The presence of bacterial taxa associated to the photosynthetic microflora and fungi within the biofilm contributed to clarify the relationships inside the microbial community and to explain the alteration observed at the different sites. These results will contribute to the application of more successful strategies for the preventive conservation of subterranean archaeological sites.  相似文献   

17.
Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.  相似文献   

18.
Many of the monuments of the Mayan civilization are suffering deterioration caused by environmental factors (high temperatures and relative humidities), increasing contamination from natural and anthropogenic sources, and by the action of micro- and macro-biological communities. Archaeological sites and historical monuments in the Mayan area were constructed with different limestones which offer different resistances to degradation by the various types of contamination. Two different sampling sites were chosen at the archaeological site of Uxmal in the Yucatan Peninsula, Mexico. Heterotrophic bacteria, cyanobacteria and different fungi were isolated and classified taxonomically. The other archaeological site chosen for this study was the fortress of Tulum, located at the side of the Caribbean Sea and exposed to chloride of marine spray and sand erosion. In this case, heterotrophic aerobic and anaerobic bacteria, cyanobacteria and fungi were isolated from the four sampling areas selected. In both archaeological sites crust deposits were observed by using light microscopy, SEM and ESEM. Surface analyses were made by means of EDAX and electron microprobe. Possible mechanisms of stone decay, based on the type of microorganisms isolated, the physico-chemical characteristics of the constructional materials and environmental factors are discussed.  相似文献   

19.
Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号