首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30-90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4-8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2-4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30-45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4-8 min) exercise (P less than 0.1). In the chronic (1-2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.  相似文献   

2.
Tracheobronchial circulation during exercise has previously not been examined. Therefore blood flow to the trachea and bronchi (up to 7th generation of branching) was studied in seven healthy adult ponies at rest and during the 3rd and 10th min of exercise performed at a treadmill speed setting of 25 km/h. The ambient air temperature varied from 19 to 20 degrees C and humidity from 35 to 45%. To determine blood flow radionuclide-labeled 15-microns-diameter microspheres were injected into the left ventricle via a catheter advanced from the left carotid artery (exposed using local anesthesia), and a reference sample was obtained from the aorta. Adequate mixing of microspheres with blood was demonstrated by similar perfusion values for left and right kidneys. Exercise increased heart rate (194 +/- 9 and 200 +/- 7 beats/min) and mean aortic pressure (169 +/- 8 and 156 +/- 4 mmHg) of ponies at 3rd and 10th min. Tracheal blood flow (6.7 +/- 0.5 ml.min-1 x 100 g-1) of resting ponies was only one-third of the bronchial blood flow (21.6 +/- 4.9 ml.min-1 x 100 g-1) Significant changes in tracheal perfusion did not occur at 3rd or 10th min of exercise. Although bronchial perfusion also did not change at the 3rd min of exercise, it rose dramatically to 202.8 +/- 30.3 ml.min-1 x 100 g-1 during the 10th min. Concomitantly, renal blood flow decreased at 10th min of exertion. The large increase in bronchial blood flow at 10th min of exertion may have been necessitated by the need to help dissipate body heat.  相似文献   

3.
We evaluated cardiac cycle length variability in ponies at rest and during strenuous exercise with and without premedication with atropine. In the absence of premedication, cardiac cycle length at rest was 1,112 +/- 53 ms, the individual cardiac cycle length standard deviation (SDCL) was 75 +/- 23 ms, and the individual cycle length coefficient of variation (CVCL) was 6.32 +/- 1.62. Exercise significantly decreased (P < 0.05) all three indexes (290 +/- 9 ms, 5 +/- 1 ms, and 1.65 +/- 0.20, respectively). Atropine premedication significantly reduced resting cardiac cycle length (685 +/- 46 ms), SDCL (10 +/- 2 ms), and CVCL (1.45 +/- 0.19) compared with nonpremedicated values. Cardiac cycle length was significantly decreased by exercise after atropine premedication, but no statistically significant changes occurred in SDCL or CVCL. Thus, although considerable cardiac cycle length variability exists in nonpremedicated ponies at rest, it is nearly completely abolished by strenuous exercise. The absence of significant differences between the indexes of variability during exercise without premedication, at rest after atropine, and during exercise after atropine indicates that cardiac cycle length variability in the pony is mediated primarily through activity of the parasympathetic system.  相似文献   

4.
We investigated arterial PCO2 (PaCO2) and pH (pHa) responses in ponies during 6-min periods of high-intensity treadmill exercise. Seven normal, seven carotid body-denervated (2 wk-4 yr) (CBD), and five chronic (1-2 yr) lung (hilar nerve)-denervated (HND) ponies were studied during three levels of constant load exercise (7 mph-11%, 7 mph-16%, and 7 mph-22% grade). Mean pHa for each group of ponies became alkaline in the first 60 s (between 7.45 and 7.52) (P less than 0.05) at all work loads. At 6 min pHa was at or above rest at 7 mph-11%, moderately acidic at 7 mph-16% (7.32-7.35), and markedly acidic at 7 mph-22% (7.20-7.27) for all groups of ponies. Yet with no arterial acidosis at 7 mph 11%, normal ponies decreased PaCO2 below rest (delta PaCO2) by 5.9 Torr at 90 s and 7.8 Torr by 6 min of exercise (P less than 0.05). With a progressively more acid pHa at the two higher work loads in normal ponies, delta PaCO2 was 7.3 and 7.8 Torr by 90 s and 9.9 and 11.4 Torr by 6 min, respectively (P less than 0.05). CBD ponies became more hypocapnic than the normal group at 90 s (P less than 0.01) and tended to have greater delta PaCO2 at 6 min. The delta PaCO2 responses in normal and HND ponies were not significantly different (P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
7.
We assessed cardiovascular variables and blood O2 contents in order to characterize O2 transport in ponies during treadmill exercise. In normal ponies at 1.8, 3, and 6 mph, respectively, cardiac output (Qc) increased from 12 l/min at rest to maximum levels of 19.7, 28.7, and 39.9 l/min between 30 and 60 s. Qc then decreased to steady-state levels of 18.2, 24.6, and 32.7 l/min by 4 min. Heart rate (HR) showed a similar biphasic response in the 1st min of exercise. Systolic and diastolic arterial blood pressure (BP) decreased at the onset of exercise by 20-25 Torr (P less than 0.05) and then increased to a steady-state by 60 s. Mean right ventricular pressures (MRVBP) increased from approximately 9.7 Torr at rest to 15.9 (1.8 mph), 15.2 (3 mph), and 23.6 Torr (6 mph) by 1 min and then decreased throughout the remainder of the 8 min of exercise (P less than 0.05). At 3 and 6 mph, respectively, arterial O2 content (CaO2) increased from 11.6 vol% at rest to 12.7 and 15.0 vol% by 45 s and 13.1 and 16.6 vol% by 7 min. At 7 min of 9.3 mph exercise, it increased to 20.34 vol%. Hemoglobin (Hb) at 3 mph increased from 9.6 g/100 ml at rest to 10.5 g/100 ml by 45 s and 11.7 g/100 ml by 7 min. At 6 mph, Hb increased to 12 g/100 ml at 45 s and 13.0 g/100 ml by 7 min of exercise. These data demonstrate that the rapid, work load-dependent increase in CaO2 represents an important mechanism to increase O2 transport in exercising ponies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The effects of prior moderate- and prior heavy-intensity exercise on the subsequent metabolic response to incremental exercise were examined. Healthy, young adult subjects (n = 8) performed three randomized plantar-flexion exercise tests: 1) an incremental exercise test (approximately 0.6 W/min) to volitional fatigue (Ramp); 2) Ramp preceded by 6 min of moderate-intensity, constant-load exercise below the intracellular pH threshold (pHT; Mod-Ramp); and 3) Ramp preceded by 6 min of heavy-intensity, constant-load exercise above pHT (Hvy-Ramp); the constant-load and incremental exercise periods were separated by 6 min of rest. (31)P-magnetic resonance spectroscopy was used to continuously monitor intracellular pH, phosphocreatine concentration ([PCr]), and inorganic phosphate concentration ([P(i)]). No differences in exercise performance or the metabolic response to exercise were observed between Ramp and Mod-Ramp. However, compared with Ramp, a 14% (SD 10) increase (P < 0.01) in peak power output (PPO) was observed in Hvy-Ramp. The improved exercise performance in Hvy-Ramp was accompanied by a delayed (P = 0.01) onset of intracellular acidosis [Hvy-Ramp 60.4% PPO (SD 11.7) vs. Ramp 45.8% PPO (SD 9.4)] and a delayed (P < 0.01) onset of rapid increases in [P(i)]/[PCr] [Hvy-Ramp 61.5% PPO (SD 12.0) vs. Ramp 45.1% PPO (SD 9.1)]. In conclusion, prior heavy-intensity exercise delayed the onset of intracellular acidosis and enhanced exercise performance during a subsequent incremental exercise test.  相似文献   

16.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Skeletal muscle vasodilation at the onset of exercise   总被引:3,自引:0,他引:3  
The purpose of this study was to determinewhether -adrenergic or muscarinic receptors are involved in skeletalmuscle vasodilation at the onset of exercise. Mongrel dogs(n = 7) were instrumented with flow probes on both externaliliac arteries and a catheter in one femoral artery. Propranolol (1 mg), atropine (500 µg), both drugs, or saline was infusedintra-arterially immediately before treadmill exercise at 3 miles/h,0% grade. Immediate and rapid increases in iliac blood flow occurredwith initiation of exercise under all conditions. Peak blood flows werenot significantly different among conditions (682 ± 35, 646 ± 49, 637 ± 68, and 705 ± 50 ml/min, respectively). Although thedoses of antagonists employed had no effect on heart rate or systemicblood pressure, they were adequate to abolish agonist-induced increasesin iliac blood flow. Because neither propranolol nor atropine affected iliac blood flow, we conclude that activation of -adrenergic andmuscarinic receptors is not essential for the rapid vasodilation inactive skeletal muscle at the onset of exercise in dogs.

  相似文献   

18.
Diaphragmatic O2 and lactate extraction were examined in seven healthy ponies during maximal exercise (ME) carried out without, as well as with, inspiratory resistive breathing. Arterial and diaphragmatic venous blood were sampled simultaneously at rest and at 30-s intervals during the 4 min of ME. Experiments were carried out before and after left laryngeal hemiplegia (LH) was produced. During ME, normal ponies exhibited hypocapnia, hemoconcentration, and a decrease in arterial PO2 (PaO2) with insignificant change in O2 saturation. In LH ponies, PaO2 and O2 saturation decreased well below that in normal ponies, but because of higher hemoglobin concentration, arterial O2 content exceeded that in normal ponies. Because of their high PaCO2 during ME, acidosis was more pronounced in LH animals despite similar lactate values. Diaphragmatic venous PO2 and O2 saturation decreased with ME to 15.5 +/- 0.9 Torr and 18 +/- 0.5%, respectively, at 120 s of exercise in normal ponies. In LH ponies, corresponding values were significantly less: 12.4 +/- 1.3 Torr and 15.5 +/- 0.7% at 120 s and 9.8 +/- 1.4 Torr and 14.3 +/- 0.6% at 240 s of ME. Mean phrenic O2 extraction plateaued at 81 and 83% in normal and LH animals, respectively. Significant differences in lactate concentration between arterial and phrenic-venous blood were not observed during ME. It is concluded that PO2 and O2 saturation in the phrenic-venous blood of normal ponies do not reach their lowest possible values even during ME. Also, the healthy equine diaphragm, even with the added stress of inspiratory resistive breathing, did not engage in net lactate production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号