首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-bound component of the phosphotransferase system of Escherichia coli, responsible for the phosphorylative uptake of methyl-α-d-glucoside has an essential thiol group which becomes available to inactivation by thiol reagents in the presents of the phosphate-accepting sugar or when phosphoenolpyruvate synthesis is inhibited. The form resistant to the thiol reagent requires not only the absence of sugar and an intact phosphoenol-pyruvate generating system, but also an intact system generating phosphorylated Hpr which is impaired by heating of a thermosensitive enzyme I mutant.  相似文献   

2.
beta-Glucoside transport by phosphoenolpyruvate-hexose phosphotransferase system in Escherichia coli is inactivated in vivo by thiol reagents. This inactivation is strongly enhanced by the presence of transported substrates. In a system reconstituted from soluble and membrane-bound components, only the particulate component, the membrane-bound enzyme IIbgl appeared as the target of N-ethylmaleimide inaction. The same feature was found in the case of methyl-alpha-D-glucoside uptake via enzyme IIglc. It is shown that the sensitizing effect of substrates is specific and not generalized, methyl-alpha-D-glucoside only sensitizes enzyme IIglc and p-nitrophenyl-beta-D-glucoside only sensitizes enzyme IIbgl towards N-ethylmaleimide inactivation. The inactivation of enzyme IIbgl by thiol reagents is also promoted in vivo by fluoride inhibition of phosphoenolpyruvate synthesis. In toluene-treated bacteria, the presence of phosphoenolpyruvate protects against inactivation by thiol reagents of p-nitrophenyl-beta-D-glucoside phosphorylation. Both results suggest that the inactivator resistent form of enzyme IIbgl is an energized form of the enzyme.  相似文献   

3.
Uptake of glycerol and other carbohydrates by Staphylococcus aureus cells is sensitive to regulation by sugar substrates of the phosphoenolpyruvate:sugar phosphotransferase system. Inhibition requires an intact phosphotransferase system. In contrast to results obtained with Gram-negative bacteria, it appears that intracellular sugar phosphate is the inhibiting species.  相似文献   

4.
The phosphoglycerate transport system was employed to supply energy-depleted, lysozyme-treated Salmonella typhimurium cells with a continuous intracellular source of phosphoenolpyruvate. When the cells had been induced to high levels of the phosphoglycerate transport system, a low extracellular concentration of phosphoenolpyruvate (0.1 mM) half maximally stimulated uptake of methyl alpha-glucoside via the phosphoenolpyruvate:sugar phosphotransferase system. If the phosphoglycerate transport system was not induced before energy depletion, 100 times this concentration of phosphoenolpyruvate was required for half-maximal stimulation. Phosphoenolpyruvate could not be replaced by other energy sources if potassium fluoride (an inhibitor of enolase) was present. Inhibition of [14C]-glycerol uptake into energy-depleted cells by methyl alpha-glucoside was demonstrated. A concentration of phosphoenolpyruvate which stimulated methyl alpha-glucoside accumulation counteracted the inhibitory effect of the glucoside. In the presence of potassium fluoride, phosphoenolpyruvate could not be replaced by other energy sources. Inhibition of glycerol uptake by methyl alpha-glucoside in intact untreated cells was also counteracted by phosphoenolpyruvate, but several energy sources were equally effective; potassium fluoride was without effect. These and other results were interpreted in terms of a mechanism in which the relative proportions of the phosphorylated and nonphosphorylated forms of a cell constituent influence the activity of the glycerol transport system.  相似文献   

5.
We investigated the claim (J. Daniel, J. Bacteriol. 157:940-941, 1984) that nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system is required for full synthesis of bacterial cyclic AMP (cAMP). In crp strains of Salmonella typhimurium, cAMP synthesis by intact cells was regulated by the phosphorylation state of enzyme IIIGlc. Introduction of either a pstHI deletion mutation or a crr::Tn10 mutation resulted in a low level of cAMP synthesis. In contrast, crp strains containing a leaky pstI mutation exhibited a high level of cAMP synthesis which was inhibited by phosphotransferase system carbohydrates. From these results, we conclude that phosphorylated enzyme IIIGlc rather than nonphosphorylated enzyme IIIGlc is required for full cAMP synthesis.  相似文献   

6.
Regulation of the synthesis of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system was systematically studied in wild-type and mutant strains of Salmonella typhimurium and Escherichia coli. The results suggest that enzyme I and HPr as well as the glucose-specific and the mannose-specific enzymes II are synthesized by a mechanism which depends on (i) cyclic adenosine monophosphate and its receptor protein; (ii) extracellular inducer; (iii) the sugar-specific enzyme II complex which recognizes the inducing sugar; and (iv) the general energy-coupling proteins of the phosphotransferase system, enzyme I and HPr.  相似文献   

7.
The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is widespread among bacteria where it mediates carbohydrate uptake and often serves in carbon control. Here we present cloning and analysis of the monocistronic ptsI gene of Corynebacterium glutamicum R, which encodes PTS Enzyme I (EI). EI catalyzes the first reaction of PTS and the reported ptsI was shown to complement the corresponding defect in Escherichia coli. The deduced 59.2-kDa EI of 564 amino acids shares more than 50% homology with EIs from Bacillus stearothermophilus, Bacillus subtilis, and Lactobacillus sake. Chromosomal inactivation of ptsI demonstrated that EI plays an indispensable role in PTS of C. glutamicum R and this system represents a dominant sugar uptake system. Cellobiose was only transported and utilized in adaptive mutants of C. glutamicum R. Cellobiose transport was also found to be PTS-dependent and repressed by PTS sugar glucose.  相似文献   

8.
Purified IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system of Salmonella typhimurium inhibits glycerol kinase. Phosphorylation of IIIGlc via phosphoenolpyruvate, enzyme I, and HPr abolishes this inhibition. The glycerol facilitator is not inhibited by IIIGlc. It is proposed that regulation of glycerol metabolism by the phosphoenolpyruvate:sugar phosphotransferase system is at the level of glycerol kinase.  相似文献   

9.
J J Ye  M H Saier  Jr 《Journal of bacteriology》1996,178(12):3557-3563
By using both metabolizable and nonmetabolizable sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), we show that PTS sugar uptake into intact cells and membrane vesicles of Lactococcus lactis and Bacillus subtilis is strongly inhibited by high concentrations of any of several metabolizable PTS sugars. Inhibition requires phosphorylation of seryl residue 46 in the phosphocarrier protein of the PTS, HPr, by the metabolite-activated, ATP-dependent protein kinase. Inhibition does not occur when wild-type HPr is replaced by the S46A mutant form of this protein either in vesicles of L. lactis or B. subtilis or in intact cells of B. subtilis. Nonmetabolizable PTS sugar analogs such as 2-deoxyglucose inhibit PTS sugar uptake by a distinct mechanism that is independent of HPr(ser-P) and probably involves cellular phosphoenolpyruvate depletion.  相似文献   

10.
Transient and catabolite repression with changes in intracellular concentrations of cyclic adenosine 3',5-monophosphate is produced by glycerol and by glucose-6-phosphate in a strain with a partial deletion of the structural gene for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system.  相似文献   

11.
Enzyme I, the first in the sequence of phosphocarrier proteins of the bacterial phosphoenolpyruvate:glycose phosphotransferase system, is a potential critical point for regulating sugar uptake. The thermal stability of Enzyme I was studied by high sensitivity differential scanning calorimetry. At pH 7.5, thermal unfolding of the protein exhibits two peaks with maxima (Tm) at 47.6 and 55.1 degrees C, indicating that the protein comprises two cooperative unfolding structures. Interaction between the two domains is markedly dependent on pH within the range 6.5-8.5. At pH 7.5, catalytic activity was unaffected by heating through the first transition but was lost by heating through the second. Cleavage of Enzyme I (63.5 kDa) by trypsin, chymotrypsin, or Staphylococcus aureus V8 protease yields a 30-kDa fragment, EI-N, containing the NH2 terminus and the active site, His-189. Protease and differential scanning calorimetry experiments show that EI-N is the structural domain corresponding to the cooperative region in the intact enzyme that unfolds at the higher Tm. EI-N catalyzes one activity of Enzyme I; it accepts a phosphoryl group from phosphohistidine-containing phosphocarrier protein but cannot be phosphorylated by phospho-Enzyme I or phosphoenolpyruvate. The phosphoryl transfer between EI-N and the histidine-containing phosphocarrier protein is reversible. Portions of the Salmonella typhimurium ptsI DNA sequence are known; the complete sequence is presented here and compared to Escherichia coli ptsI.  相似文献   

12.
Cyclic AMP (cAMP) synthesis in Escherichia coli is altered in cAMP receptor protein mutants and in phosphoenolpyruvate:sugar phosphotransferase transport system mutants. The stimulation of cAMP synthesis observed in cAMP receptor protein-deficient mutants is largely dependent upon enzyme III of the phosphoenolpyruvate:sugar phosphotransferase transport system. The phosphoenolpyruvate:sugar phosphotransferase transport system enzyme I is not required for elevated cAMP synthesis. These results suggest that enzyme III plays an important role in regulating adenylate cyclase activity.  相似文献   

13.
Mutants expressing a novel enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system, termed enzyme I, were isolated from strains of Salmonella typhimurium which were deleted for the HPr and enzyme I structural genes. The mutations lay in a newly defined gene, termed ptsJ, which mapped on the S. typhimurium chromosome between the ptsHI operon and the cysA gene.  相似文献   

14.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

15.
Streptococcus pyogenes accumulated thiomethyl-beta-galactoside as the 6-phosphate ester due to the action of the phosphoenolpyruvate:lactose phosphotransferase system. Subsequent addition of glucose resulted in rapid efflux of the free galactoside after intracellular dephosphorylation (inducer expulsion). Efflux was shown to occur in the apparent absence of the galactose permease, but was inhibited by substrate analogs of the lactose enzyme II and could not be demonstrated in a mutant of S. lactis ML3 which lacked this enzyme. The results suggest that the enzymes II of the phosphotransferase system can catalyze the rapid efflux of free sugar under appropriate physiological conditions.  相似文献   

16.
Jadwiga Bryła 《FEBS letters》1983,162(2):244-247
The effect of phosphoenolpyruvate on glutamate dehydrogenase activity was studied in both intact and Triton X-100-treated rabbit renal mitochondria. The intramitochondrial phosphoenolpyruvate content was modulated by application of both 3-MPA, an inhibitor of phosphoenolpyruvate carboxykinase, and BTCA, which inhibits the tricarboxylate-transporting system. The data indicate that: (i) phosphoenolpyruvate is a potent inhibitor of glutamate dehydrogenase activity; and (ii) its inhibitory effect on the enzyme may be abolished by leucine and ADP, activators of glutamate dehydrogenase.  相似文献   

17.
Phosphoproteins produced by the incubation of crude extracts of Salmonella typhimurium and Escherichia coli with either [32P]phosphoenolpyruvate or [gamma 32P]ATP have been resolved and detected using sodium dodecyl sulphate polyacrylamide gel electrophoresis and autoradiography. Simple techniques were found such that distinctions could be made between phosphoproteins containing acid-labile or stable phosphoamino acids and between N1-P-histidine and N3-P-histidine. Phosphoproteins were found to be primarily formed from phosphoenolpyruvate, but because of an efficient phosphoexchange, ATP also led to the formation of the major phosphoenolpyruvate-dependent phosphoproteins. These proteins had the following apparent subunit molecular weights: 65,000, 65,000, 62,000, 48,000, 40,000, 33,000, 25,000, 20,000, 14,000, 13,000, 9,000, 8,000. Major ATP-dependent phosphoproteins were detected with apparent subunit molecular weights of 75,000, 46,000, 30,000, and 15,000. Other minor phosphoproteins were detected. The phosphorylation of the 48,000- and 25,000-MW proteins by phosphoenolpyruvate was independent of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS phosphoproteins were identified as enzyme I (soluble; MW = 65,000); enzyme IIN-acetylglucosamine (membrane bound; MW = 65,000); enzyme IImannitol (membrane bound; MW = 62,000); IIIfructose (soluble; MW = 40,000); IIImannose (partially membrane associated; MW = 33,000); IIIglucose (soluble; MW = 20,000); IIIglucitol (soluble; MW = 13-14,000); HPr (soluble; MW = 9,000); FPr (fructose induced HPr-like protein (soluble; MW = 8,000). HPr and FPr are phosphorylated on the N-1 position of a histidyl residue while all the others appear to be phosphorylated on an N-3 position of a histidyl residue. These studies identify some previously unknown proteins of the PTS and show the phosphorylation of others, which although previously known, had not been shown to be phosphoproteins.  相似文献   

18.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

19.
The addition of N-ethylmaleimide (MalNEt), or of fluoro dinitrobenzene to a suspension of Escherichia coli during the phosphorylating uptake of methyl-alpha-D-glucopyranoside (Me-Glc), a glucose analog, stops uptake and phosphorylation and causes the loss of previously accumulated sugar and of its phosphate ester. After removal of the reagents, the phosphotransferase system remains irreversibly inactive. Pretreatment of the bacteria with the same reagents under the same conditions of concentration, pH, temperature and for the same length of time causes very little inactivation. Mercuric chloride, a reversible inactivator, prevents the phosphotransferase system from reacting simultaneously with MaINEt or with fluorodinitrobenzene. This protection strongly suggests that all three reagents react with the same site, presumably an -SH group. The change which makes this site available to the reagents depends on the phosphorylative uptake of Me-Glc. Preload of the cells and efflux of Me-Glc do not achieve the same change. The rate of inactivation is directly proportional to the rate of phosphorylative uptake. When the Km of phosphorylative uptake is modified by an uncoupling agent, the substrate concentration allowing half maximal rate of inactivation by MaINEt changes accordingly. The reactive sites of the phosphotransferase system can also be made accessible to the -SH group reagents by fluoride inhibition of phosphoenolpyruvate synthesis. This suggests that the inactivator resistent form is an "energized form" of the enzyme. The unmasking of the reactive site is not due to a change in transmembrane penetration of the reagents since incubation of toluene treated cells with MaINEt in the presence of phosphoenolpyruvate fails to inactivate the phosphotransferase activity, while incubation with MaINEt plus Me-Glc causes fast inactivation.  相似文献   

20.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号