首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli O157:H7, a zoonotic human pathogen for which domestic cattle are a reservoir host, produces a Shiga toxin(s) (Stx) encoded by bacteriophages. Chromosomal insertion sites of these bacteriophages define three principal genotypes (clusters 1 to 3) among clinical isolates of E. coli O157:H7. Stx-encoding bacteriophage insertion site genotypes of 282 clinical and 80 bovine isolates were evaluated. A total of 268 (95.0%) of the clinical isolates, but only 41 (51.3%) of the bovine isolates, belonged to cluster 1, 2, or 3 (P < 0.001). Thirteen additional genotypes were identified in isolates from both cattle and humans (four genotypes), from only cattle (seven genotypes), or from only humans (two genotypes). Two other markers previously associated with isolates from cattle or with clinical isolates showed similar associations with genotype groups within bovine isolates; the tir allele sp-1 and the Q933W allele were under- and overrepresented, respectively, among cluster 1 to 3 genotypes. Stx-encoding bacteriophage insertion site typing demonstrated that there is broad genetic diversity of E. coli O157:H7 in the bovine reservoir and that numerous genotypes are significantly underrepresented among clinical isolates, consistent with the possibility that there is reduced virulence or transmissibility to humans of some bovine E. coli O157:H7 genotypes.  相似文献   

2.
3.
Isogenic strains of Escherichia coli O157:H7, missing either stx2 or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

4.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

5.
Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1–3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.  相似文献   

6.
We investigated the ability of a detoxified derivative of a Shiga toxin 2 (Stx2)-encoding bacteriophage to infect and lysogenize enteric Escherichia coli strains and to develop infectious progeny from such lysogenized strains. The stx2 gene of the patient E. coli O157:H7 isolate 3538/95 was replaced by the chloramphenicol acetyltransferase (cat) gene from plasmid pACYC184. Phage 3538(Δstx2::cat) was isolated after induction of E. coli O157:H7 strain 3538/95 with mitomycin. A variety of strains of enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Stx-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and E. coli from the physiological stool microflora were infected with 3538(Δstx2::cat), and plaque formation and lysogenic conversion of wild-type E. coli strains were investigated. With the exception of one EIEC strain, none of the E. coli strains supported the formation of plaques when used as indicators for 3538(Δstx2::cat). However, 2 of 11 EPEC, 11 of 25 STEC, 2 of 7 EAEC, 1 of 3 EIEC, and 1 of 6 E. coli isolates from the stool microflora of healthy individuals integrated the phage in their chromosomes and expressed resistance to chloramphenicol. Following induction with mitomycin, these lysogenic strains released infectious particles of 3538(Δstx2::cat) that formed plaques on a lawn of E. coli laboratory strain C600. The results of our study demonstrate that 3538(Δstx2::cat) was able to infect and lysogenize particular enteric strains of pathogenic and nonpathogenic E. coli and that the lysogens produced infectious phage progeny. Stx-encoding bacteriophages are able to spread stx genes among enteric E. coli strains.  相似文献   

7.
Genetic markers previously reported to occur at significantly different frequencies in isolates of Escherichia coli O157:H7 obtained from cattle and from clinically affected humans concordantly delineate at least five genetic groups. Isolates in three of these groups consistently carry one or more markers rarely found among clinical isolates.Escherichia coli serotype O157:H7 is an important zoonotic pathogen that may cause diarrhea, bloody diarrhea, and hemolytic-uremic syndrome (3, 10, 14). E. coli O157 is transmitted to humans by direct contact with the animal reservoir (which includes cattle and other ruminant animals) or indirectly by ingestion of contaminated food or water (3, 10). Genetic analyses of bovine isolates of E. coli O157 from diverse geographic origins have provided evidence for the global dissemination of genotypes and also for significant regional differences in the relative prevalence of some genotypes (5, 8, 18, 19).Several research groups have identified genetic markers that occur at different relative frequencies among E. coli O157 isolates from human clinical cases and from cattle. One group initially used octamer-based genomic scanning to identify two lineages of U.S. origin E. coli O157 (7), of which lineage I was composed mostly (36/44) of clinical isolates and lineage II was composed mostly (25/32) of cattle isolates. Subsequently, a simpler multiplex PCR-based assay (Table (Table1),1), the lineage-specific polymorphism assay (LSPA), was developed to indentify these lineages (19). Six LSPA loci with alleles characteristic of lineage I, lineage II, or neither lineage I nor lineage II are, respectively, classified with the digit 1, 2, or 3, and these digits are concatenated to an LSPA code: 111111 indicates lineage I, and 211111 indicates a genetically intermediate group termed lineage I/II (20), whereas all other genotype variations are considered to belong to lineage II. More recently, a typing assay based on Shiga toxin-encoding bacteriophage insertion (SBI) sites grouped 91 of 92 clinical E. coli O157 isolates from the northwestern United States into three clusters, of which clusters 1 and 3 predominated (>90%) (16). SBI consists of six PCRs (Table (Table1)1) that amplify the Stx toxin genes and the insertion site junctions of the Stx1- and Stx2-encoding bacteriophages of E. coli O157. In a subsequent study, the predominance (92.6%) of clusters 1 and 3 was confirmed in 190 additional human (clinical) isolates (1). In contrast, many (48.8%) E. coli O157 isolates from cattle in the northwestern United States and western Canada demonstrated SBI patterns rarely found among human (clinical) isolates (1).

TABLE 1.

Oligonucleotides used in this study
TestTargetTypeSequence (5′→3′)aReference(s)
LSPAFold-sfmAPrimerVIC-TACGTAGGTCGAAGGG18, 20
Z5935PrimerCCAGATTTACAACGCC
yhcGPrimerFAM-GTGTTCCCGGTATTTG
rbsBPrimerCTCACTGGCGTAACCT
rtcBPrimerVIC-CTCTGCAAAAAACTTACGCC
arp-iclRPrimerCAGGTGGTTGATCAGCG
PrimerFAM-AGTTTAATGTTCTTGCCAGCC
PrimerATTCACCGCTTTTTCGCC
PrimerVIC-GCGCCAGATCGATAAAGTAAG
PrimerGCCGTTGTAAACGTGATAAAG
PrimerFAM-GCTCAATCTCATAATGCAGCC
PrimerCACGTATTACCGATGACCG
SBIstx1PrimerCGCTTTGCTGATTTTTCACA16
PrimerGTAACATCGCTCTTGCCACA
stx2PrimerGTTCCGGAATGCAAATCAGT
PrimerCGGCGTCATCGTATACACAG
L yehV-phagePrimerCACCGGAAGGACAATTCATC
R yehV-phagePrimerAACAGATGTGTGGTGAGTGTCTG
L wrbA-phagePrimerAAGTGGCGTTGCTTTGTGAT
R wrbA-phagePrimerGATGCACAATAGGCACTACGC
PrimerCCGACCTTTGTACGGATGTAA
PrimerCGAATCGCTACGGAATAGAGA
PrimerAGGAAGGTACGCATTTGACC
PrimerATCGTTCGCAAGAATCACAA
Q933Q933FPrimerCGGAGGGGATTGTTGAAGGC9
Q21stx2aRPrimerCCGAAGAAAAACCCAGTAACAG
Q21FPrimerGAAATCCTCAATGCCTCGTTG
stx2aRPrimerCCGAAGAAAAACCCAGTAACAG
TirtirFPrimerTGGCGGCGTCTGAGATAAC2
tirRPrimerGAGTATCGAGCGGACCATGATC
tirAProbeVIC-ACTGAATGATGGATTTG-MGBNFQ
tirTProbeFAM-CTGAATGAAGGATTTG-MGBNFQ
Open in a separate windowaVIC, proprietary reporter dye, Applied Biosystems; FAM, 6-carboxyfluorescein; MGBNFQ, molecular-groove-binding nonfluorescent quencher.Additional individual markers reported to occur at differing frequencies among clinical and reservoir isolates include the presence or absence of stx2-Q junction alleles (e.g., Q933 and Q21 alleles in 90% and 15.2% of 66 human isolates versus 44% and 64.8% of 91 bovine isolates, respectively) (9) and the nonsynonymous single nucleotide polymorphism (SNP) 255T→A in tir, a key virulence gene of E. coli O157:H7 (<1% of 108 human isolates versus 44% of 77 bovine isolates had the A allele) (2).The goal of this study was to evaluate the concordance of these various markers reported to occur at different frequencies among isolates from asymptomatic cattle and from human patients. A convenience set of 145 E. coli O157 isolates obtained from cattle, aggregated from two isolate sets chosen to maximize the diversity of geographic and temporal origins within our isolate bank and whose provenance and SBI types were described previously, was used for this study (1, 5, 18). Briefly, these isolates were non-sorbitol-fermenting, beta-glucuronidase-negative E. coli O157 isolates from cattle on 130 different premises in five countries and 14 U.S. states, isolated in 12 different years ranging from 1991 through 2004. The isolates from outside North America included isolates from Australia (n = 7, obtained in 1993 to 2003), Japan (n = 17, obtained in 1996 to 1997), and Scotland (n = 11, obtained in 1999). LSPA was applied to this set by using previously described primer sequences (19), although capillary rather than gel electrophoresis was used (Table (Table1;1; DNA analyzer 3730, LIZ 600 size standard; Applied Biosystems, Foster City, CA). Data were analyzed with GeneMarker software (SoftGenetics, LLC, State College, PA). Q-stx2 alleles Q933 and Q21 were detected by PCR, and the tir polymorphism was detected by real-time PCR as described previously (2, 9).Comparison of typing results produced by the LSPA, SBI, Q-stx2, and tir methods showed considerable overall agreement. Cross-classification of the LSPA and SBI results (Table (Table2)2) showed particularly strong agreement in assignment to the two human disease-associated genotypes (LSPA 111111 and 211111; SBI 1 and 3; chi square = 268, 20 df, P < 0.001; Cramer''s V statistic = 0.681). Q-stx2 typing identified the Q933 allele in 117 isolates, including 59 of 60 LSPA/SBI human disease-associated genotypes. The Q21 allele was detected in 67 isolates but was not strongly associated with either human disease or cattle-associated genotypes overall (data not shown). The tir nucleotide 255A allele was detected in 39 isolates, only 1 of which had an LSPA/SBI human disease-associated genotype.

TABLE 2.

Cross-tabulation of genotypes identified by the SBI and LSPA methods among 145 isolates of bovine E. coli O157:H7 isolates of diverse temporal and geographic origins
LSPA typeNo. of isolates typed by SBI as:
Total
1356Othera
111111044021056
21111116021827
21311100113216
222213105107
222222002507
221213204006
Otherb21202126
Total2145342421145
Open in a separate windowaSBI also identified five isolates of genotype 7; four isolates of genotype 10; three isolates of genotype 16; two isolates each of genotypes 11, 14, and 15; and single isolates of genotypes 4, 12, and 13 (1).bLSPA also identified three isolates each of genotypes 222113 and 222313; two isolates each of genotypes 212111, 222212, 223213, 231111, 231233, and 232233; and single isolates of genotypes 111211, 212113, 222223, 223212, 223313, and 232233 (20).While these cross-comparisons supported a significant degree of concordance between the results of the various typing systems, the data analysis was complicated by the differing numbers of genotypes determined by the different systems, and in particular by the classification by LSPA and SBI of numerous isolates into a number of sparsely populated genotypes (Table (Table2).2). More generally, it seemed likely that the best classification of the isolates would result from a consideration of all of the data generated. Therefore, we used Markov chain Monte Carlo (MCMC) model-based clustering, implemented in the structure software package, version 2.2 (6), to investigate the population structure using as input data the 15 locus-specific test results (i.e., the six loci each from the LSPA and SBI genotyping panels together with the Q933, Q21, and tir loci) (see Table S1 in the supplemental material). The model assumes K populations, each of which is characterized by allele frequencies at multiple unlinked or weakly linked loci. Within each population, the loci are assumed to be at linkage equilibrium. It was not possible to test the validity of these assumptions for the isolate set modeled here, and it is likely that at least some degree of linkage disequilibrium is present within E. coli O157:H7 populations (12). We utilized this model both to determine the most likely number of populations (K) within the isolate set and to assign individual isolates to the best-fitting population(s). K = 1 would imply a lack of genetic substructure within the isolate set, while any K of >1 would assume the presence of the corresponding number of subgroups with distinct sets of allele frequencies. Initial assignments of group membership for each isolate were based on the location (North America, Scotland, Japan, or Australia) of the cattle from which the E. coli O157 isolates were obtained, due to the potential for genetic divergence of geographically separated populations.K values of 1 to 10 were initially evaluated with 10 model runs each, with each run consisting of a 20,000-step burn-in followed by a 50,000-step parameter estimation. Comparison of the estimated logarithmic posterior probabilities [ln P(X|K), where X is the data] of these runs revealed that K values of <4 or >7 were highly unlikely. Additional runs (25 runs, each consisting of 100,000 steps for burn-in, followed by 100,000 steps for parameter estimation), were then performed in order to model each K value from 4 through 7. The results of these models demonstrated nearly equal maximum relative posterior probabilities for K = 5 and K = 6.We selected K = 5 models for assigning isolates to specific clusters, based on (i) the parsimony principle (K = 5 being a less complex population structure than K = 6), (ii) the precision of the posterior probabilities (K = 5 models had consistently lower variances than K = 6 models), (iii) the lack of sensitivity of the model-derived posterior probabilities to the prior population assignments used to initialize the model (posterior probabilities of models initialized or not initialized with each isolate''s country of origin increasingly diverged in values as K increased from 6), and (iv) the admixture determinations for individual isolates (as K increased from 6, an increasing proportion of the study isolates shared characteristics of two or more clusters). Cluster assignments from six independent, randomly selected K = 5 model runs were compared for concordance: using a criterion of a 0.5 or higher probability to assign isolates to their best-fit clusters, all cluster assignments from the six selected runs were perfectly concordant, with 140 to 142 isolates assigned to specific clusters, leaving only 3 to 5 isolates (depending on the run) with no cluster assignable at a 0.5 or higher probability (see Fig. S1 in the supplemental material). However, it is possible that the uncertainty of these ancestry assignments was underestimated or that the assignments were biased as a result of possible violation of the assumptions of linkage equilibrium within populations (6).The concordant assignments of 142 isolates to five genetic clusters (designated A to E) were then used as the basis for individual evaluation of the different genetic typing systems by comparing each genotyping test or system for agreement with the model-derived cluster assignments. These comparisons revealed associations between genetic markers typical of human infection (for example, SBI type 1 and LSPA type 211111 in cluster A and SBI type 3 and LSPA type 111111 in cluster B), whereas isolates in clusters C to E each contained one or more markers rarely found in clinical isolates (Fig. (Fig.1).1). All markers/marker systems were strongly nonindependently distributed among the model-derived clusters (χ2 = 84 to 338; 4 to 16 df, Cramer''s V = 0.662 to 0.937; P < 0.001 for each system). Not surprisingly, some isolates were assigned to clusters C to E by the model based on the complete data set despite carrying one or more markers typical of clinical isolates. For example, LSPA type 211111 was frequent among isolates assigned to both clusters A (17 of 19) and D (9 of 15), suggesting that this LSPA genotype may be polyphyletic. Clusters A and B cumulatively contained 73 of the 142 classified isolates (51%). We previously reported that the proportions of isolates with SBI genotypes typical of clinical isolates in different countries was weakly correlated to the respective national incidences of E. coli O157:H7-associated hemolytic-uremic syndrome (18). The structure version 2.2-derived cluster assignments reported here also differed by isolate provenance (Fig. (Fig.2;2; χ2 = 30.0, 4 df, P < 0.001; Cramer''s V = 0.262). While the number of international source isolates examined here is clearly insufficient to support strong inferences, the data indicate the possibilities of (i) the unique occurrence of cluster C in North America, (ii) a relatively high frequency of cluster A and a low frequency of cluster E in Scotland, and (iii) a relatively low frequency of cluster A in Japan and Australia. As the genetic markers of cluster A have been associated with increased virulence (11), further research on the association of the distribution of E. coli O157:H7 genotypes and the national incidence and severity of E. coli O157:H7-associated disease may be merited.Open in a separate windowFIG. 1.MCMC model-based genetic cluster assignments (A to E) and their association with (a) SBI typing, (b) LSPA typing, (c) Q933 typing, (d) Q21 typing, and (e) tir typing. Clusters A to E included 19, 54, 14, 15, and 40 isolates, respectively.Open in a separate windowFIG. 2.MCMC model-based genetic cluster assignments and their association with regions of origin. Each isolate is depicted as a single vertical bar colored to represent its genetic cluster admixture (orange, cluster A; blue, cluster B; yellow, cluster C; green, cluster D; pink, cluster E). The isolates are sorted by cluster and location of isolation. The locations are North America (n = 108), Scotland (Sc; n = 10), Japan (Jp; n = 17), and Australia (Au; n = 7). This image was generated by using the DISTRUCT 1.1 software (15).Multiple-correspondence analysis (MCA) and hierarchical clustering were used in a second approach to explore the relationships between the isolates defined by the same set of genetic markers by using the methods of Murtagh (13). The application of MCA provided an opportunity to test whether the clusters identified by the MCMC models were supported by this very different analytical method. MCA identifies a lower-dimensional subspace that approximately represents the diversity within a multivariate data set. In initial MCA models using the full data set, uncommon LSPA and SBI types (specifically, those each comprising less than 5% of the isolate set) exhibited a strong tendency to cocluster, and therefore these unusual types were pooled to produce four LSPA categories. MCA of this reduced data set (SBI [1, 3, 5, 6, or other], LSPA [111111, 211111, 213111, or other], Q933 [positive or negative], Q21 [positive or negative], and Tir [255T or 255A]) identified four dimensions (factors) that cumulatively accounted for >80% of the variation within the data set and retained 69 to 93% of the quality of representation of each marker (13) (see Table S2 in the supplemental material). The coordinates of the projections of each marker onto these four dimensions were extracted from the model and hierarchically clustered by using minimum-variance methods, weighting each marker by its mass (marginal total) (13) (Fig. (Fig.3),3), resulting in five clusters very similar (and named accordingly) to those produced by the MCMC model illustrated in Fig. Fig.11.Open in a separate windowFIG. 3.MCA with hierarchical clustering of E. coli O157:H7 genotyping data, weighted to reflect the contributions of individual factors to the total inertia (n = 138 isolates with no missing data, Ward''s minimum-variance method).In summary, these results clearly demonstrate that the several individual genetic tests or multiple test marker systems previously reported to occur at different frequencies among isolates from cattle and humans identify largely concordant genotypes of E. coli O157. The distribution of these markers among this international collection of isolates strongly indicated the existence of five (or more) genetic groups of E. coli O157, only two of which (clusters A and B) predominantly carry markers previously associated with clinical isolates. It is nearly certain that additional genetic groups or subgroups of E. coli O157 exist in nature, since delineation of these five groups is based on the sampling of only a tiny proportion of the genome: For example, in a recent study, 96 SNPs differentiated clinical E. coli O157 isolates into nine discrete clades (11). The Stx content and the relative frequencies of the two numerically predominant clades of clinical isolates identified in reference 11, clades 2 and 8, are consistent with those of clusters B and A, respectively, as described here.The concordance of the multiple genetic markers, each with alleles differentially associated with human disease, supports the hypothesis of the existence of discrete genotypes of E. coli O157 that differ in their virulence for humans. This diversity is consistent with a source-sink ecological model characterized by broad genetic diversity in the reservoir (source) bovine populations that includes at least five genetic clusters, of which only two carry genetic markers typical of clinical isolates (17). In this ecological model, human infections represent a “sink” characterized by relatively short-duration infections unlikely to be persistently transmitted (R0 < 1.0). The source-sink model implies that various E. coli O157 genotypes diverged in the bovine reservoir through genetic drift and/or through bovine fitness-based selection, during which some genotypes evolved into accidental human pathogens. Based on this model, we predict that the genomic DNA sequences of E. coli O157 genotypes largely restricted to the bovine reservoir will reveal more genetic diversity than is apparent from the clinical isolate sequences now available, and SNP data supporting this prediction have already appeared (4). Investigation of the presence and expression of virulence factors by diverse bovine E. coli O157 genotypes may be required to reveal the mechanism(s) underlying their differential association with human disease.   相似文献   

8.
9.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

10.
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.  相似文献   

11.
In 1977, Konowalchuk and colleagues (Konowalchuk, J., Speirs, J.I. & Stavric, S. 1977 Infection and Immunity 18, 775–779) were the first to describe Verocytotoxin-producing strains of Escherichia coli or VTEC. The surveillance of infection caused by VTEC demonstrated strains of E. coli belonging to serogroup O157 as the main cause of human infection capable of causing haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). Infection with O157 VTEC results in a range of disease manifestations including abdominal cramps, vomiting and fever. This frequently leads to cases with bloody diarrhoea and HC, and approximately 10% of patients develop HUS. The symptoms of disease caused by VTEC O157 have been well documented and the pathogenic mechanisms expressed by VTEC have been the focus of considerable attention. However, the role of putative pathogenic mechanisms in the pathogenesis of disease is not fully understood. The aim of this review is to consider the clinical aspects of infection with strains of VT-producing E. coli O157 in terms of the putative pathogenic mechanisms expressed by these bacteria. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Shiga toxin-producing Escherichia coli (STEC) O157 is a formidable human pathogen with the capacity to cause large outbreaks of gastrointestinal illness. The known virulence factors of this organism are encoded on phage, plasmid and chromosomal genes. There are also likely to be novel, as yet unknown virulence factors in this organism. Many of these virulence factors have been acquired by E. coli O157 by transfer from other organisms, both E. coli and non-E. coli species. By examination of biochemical and genetic characteristics of various E. coli O157 strains and the relationships with other organisms, an evolutionary pathway for development of E. coli O157 as a pathogen has been proposed. E. coli O157 evolved from an enteropathogenic E. coli ancestor of serotype O55:H7, which contained the locus of enterocyte effacement containing the adhesin intimin. During the evolutionary process, Shiga toxins, the pO157 plasmid and other characteristics which enhanced virulence were acquired and other functions such as motility, sorbitol fermentation and β-glucuronidase activity were lost by some strains. It is likely that E. coli O157 is constantly evolving, and changes can be detected in genetic patterns during the course of infection. A variety of mechanisms may be responsible for the development of the virulent phenotype that we see today. Such changes include uptake of as yet uncharacterised virulence factors, possibly enhanced by a mutator phenotype, recombination within virulence genes to produce variant genes with different properties, loss of large segments of DNA (black holes) to enhance virulence and possible adaptation to different hosts. Although little is known about the evolution of non-O157 STEC it is likely that the most virulent clones evolved in a similar manner to E. coli O157. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
Detection of Shiga toxin-producing Escherichia coli (STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection of stx is not always indicative of STEC because stx can be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positive stx detection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in which stx was replaced by gfp. Bacteria were tested either by culture or by qPCR for gfp while phages were tested using qPCR targeting stx in phage DNA. The procedure reduces phage particles by 3.3 log10 units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis.  相似文献   

14.
Pulsed-field gel electrophoresis (PFGE) of XbaI-digested DNA fragments of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains showed disappearance of a 70- or 80-kb fragment in their patterns associated with loss of Shiga toxin genes during maintenance or subcultivation. Hybridization experiments with a DNA probe complementary to Shiga toxin sequences revealed that the Shiga toxin genes in the parental strain were located on fragments the same size as the lost fragments from the toxin-negative derivatives. The evidence indicates that PFGE pattern of EHEC O157:H7 may change due to loss of Shiga toxin genes, which is likely to be associated with curing of Shiga toxin gene carrying phages in vitro. Received: 4 May 1998 / Accepted: 19 August 1998  相似文献   

15.
The purpose of this study was to describe the prevalence and longitudinal distribution of Escherichia coli O157 in feedlot cattle and the feedlot environment. Pen floors, water tanks, other cattle in the feedlot, feed, and bird feces were sampled for 2 weeks prior to entry of the study cattle. Twelve pens of study cattle were sampled twice weekly. At each sample time cattle feces, water from tanks in each pen, bunk feed, feed components, bird feces, and houseflies were collected. Bunk feed samples were collected before and after cattle had access to the feed. Overall, 28% of cattle fecal samples, 3.9% of bird fecal samples, 25% of water samples, 3.4% of housefly samples, 1.25% of bunk feed before calf access, and 3.25% of bunk feed samples after cattle had access to the feed were positive for E. coli O157. Genetic analysis of E. coli O157 isolates was done using pulsed-field gel electrophoresis (PFGE). PFGE types identified in sampling of the feedlot prior to calf entry were different than the majority of types identified following calf entry. A single strain type predominated in the samples collected after entry of the cattle. It was first identified 5 days after entry of the first pen of cattle and was subsequently identified in all pens. Data support that the incoming cattle introduced a new strain that became the predominant strain in the feedlot.  相似文献   

16.
Shiga toxin-producing Escherichia coli (STEC) O111:NM is an important serotype that has been incriminated in disease outbreaks in the United States. This study characterized cattle STEC O111:NM for virulence factors and markers by PCR. Major conclusions are that STEC O111:NM characterized in this study lacks stx2 and the full spectrum of nle gene markers, and it has an incomplete OI-122.  相似文献   

17.
8-hydroxyquinoline-beta-D-glucuronide (HQG) was used to improve the presumptive identification of Shiga toxin-producing Escherichia coli O157 (STEC O157) on sorbitol MacConkey agars (SMAC). Advantages of HQG are (i) that it is less expensive than 5-bromo-4-chloro-3-indoxyl-glucuronide; (ii) that it is visible in normal daylight and (iii) that it does not diffuse into the agar like 4-methylumbelliferryl-beta-D-glucuronide (MUG). Sixteen STEC O157 isolates, 91 bovine mastitis-associated E. coli isolates and 222 faecal E. coli isolates from apparently healthy cattle were used in this study. 4-methylumbelliferryl-beta-D-glucuronide detected beta-glucuronidase activity in more isolates than HQG (P < 0.05). On SMAC with HQG, cefixime and tellurite all STEC O157 isolates grew as cream-coloured colonies (100% sensitivity), whereas all non-STEC O157 E. coli except one grew either not at all or as purple or black colonies (99.7% specificity). No difference was found between faecal and mastitis isolates for the proportion of isolates that hydrolysed HQG or MUG or fermented sorbitol. However, significantly more mastitis isolates were able to grow in the presence of the cefixime-tellurite supplement. 8-Hydroxyquinoline-beta-D-glucuronide is a useful substrate for the identification of STEC O157 on SMAC.  相似文献   

18.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

19.
Humans play little role in the epidemiology of Escherichia coli O157:H7, a commensal bacterium of cattle. Why then does E. coli O157:H7 code for virulence determinants, like the Shiga toxins (Stxs), responsible for the morbidity and mortality of colonized humans? One possibility is that the virulence of these bacteria to humans is coincidental and these virulence factors evolved for and are maintained for other roles they play in the ecology of these bacteria. Here, we test the hypothesis that the carriage of the Stx-encoding prophage of E. coli O157:H7 increases the rate of survival of E. coli in the presence of grazing protozoa, Tetrahymena pyriformis. In the presence but not the absence of Tetrahymena, the carriage of the Stx-encoding prophage considerably augments the fitness of E. coli K-12 as well as clinical isolates of E. coli O157 by increasing the rate of survival of the bacteria in the food vacuoles of these ciliates. Grazing protozoa in the environment or natural host are likely to play a significant role in the ecology and maintenance of the Stx-encoding prophage of E. coli O157:H7 and may well contribute to the evolution of the virulence of these bacteria to colonize humans.  相似文献   

20.
Isogenic strains of Escherichia coli O157:H7, missing either stx(2) or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号