首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We examined spatial patterns and spatial autocorrelation (synchrony) of annual acorn production in three species of oaks (genus Quercus ) over A 288 km transect in central coastal California. Over small (within-site) distances of <4 km, synchrony of acorn production between individual trees wits significant but varied through time and. for coast live oaks Q. agrifolia. differed al two sites 135 km apart. On a larger geographic scale, valley Q. lobata and blue Q. douglasii oaks exhibited significant synchrony in most distance categories between trees and sites up to 135 km apart and. in the case of coast live oaks, up to the maximum extent of the transect. Spatial patterns over this geographic scale also differed among species, with valley and blue oaks, but not coast live oaks, exhibiting distinct declines in synchrony of acorn production with distance. Interspecific synchrony in acorn production was generally lower than that within species but still significant over the entire extent of the survey. Spatial synchrony between sites was to some extent related to the same environmental variables previously found to correlate with annual acorn production within a site, suggesting that the environmental factors determining acorn production locally also influence spatial patterns over larger geographic areas. These results demonstrate that mast-fruiting in oaks occurs not only on a widespread geographic scale but also across species. They also confirm that synchrony over large geographic areas and complex spatial patterns varying in time can occur in systems where dispersal does not occur and thus environmental variability (the Moran effect) alone is likely to be driving spatial dynamics.  相似文献   

2.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

3.
Spatial synchrony in population dynamics is a ubiquitous ecological phenomenon that can result from predator–prey interactions, synchronized environmental variation (Moran effects), or dispersal. Of these, dispersal historically has been the least well studied in natural systems, partly because of the difficulty in quantifying dispersal in situ. We hypothesized that dispersal routes of plankton were based on the major and consistent water current movements in Kentucky Lake, a large reservoir in western Kentucky, USA. Then, using 26‐year time series collected at 16 locations, we used matrix regression techniques to test whether spatial heterogeneity in strengths of hypothesized dispersal predicted spatial patterns of synchrony of phytoplankton and zooplankton, thereby testing for evidence of dispersal as a possible mechanism of synchrony in this system. Nearly all taxa showed significant spatial synchrony that did not decline with increasing linear distance between locations. All taxa also showed substantial geographic structure in synchrony that was not explained by linear distance. Matrix regression revealed that our hypothesized matrix of dispersal pathways, which differed substantially from linear distance, was a significant predictor of spatial variability in synchrony in phytoplankton biomass, and Bosmina longirostris and Daphnia lumholtzi densities. Thus dispersal was a likely mechanism of synchrony for these taxa. Our hypothesized dispersal matrix was a significant predictor of spatial patterns of synchrony for these taxa even after accounting for numerous alternative possible mechanisms, including possible Moran effects through any of ten physical/abiotic constraints. Our findings indicate that statistically comparing hypothesized or measured dispersal pathway information to synchrony data via matrix regressions can provide valuable evidence for the importance of dispersal as a mechanism of spatial synchrony.  相似文献   

4.
景天忠  李田宇 《生态学报》2018,38(10):3414-3421
森林昆虫种群表现出多样的时空模式,空间同步性是其中最常见的。回顾了森林昆虫空间同步性的特点、形成机制及研究方法方面的进展。森林害虫发生的同步性是广泛存在的,但不同昆虫种类的同步性大小不同。空间同步性常随距离的增大而下降,还与时间尺度有关。Moran效应和扩散是解释空间同步性的两种主要机制,通常Moran效应的影响要比扩散大。从虫害发生数据的获取、同步性的度量及成因3个方面介绍了空间同步性的研究方法方面的进展。利用树轮生态学原理重建森林虫害发生历史的方法可在事后获取可靠的数据,很值得国内研究者借鉴和应用。在空间自相关度量上,空间统计学方法和地统计学方法都是非常有力的手段,但由于不能处理多时间点数据而限制了其在同步性研究中的应用。在同步性成因研究中,利用变异分解将基于距离的Moran特征向量图(dbMEM)作为空间变量研究害虫发生的驱动力是比较新颖的研究方法。  相似文献   

5.
Winter snow depth may be an important driver of annual variability in recruitment of ungulate calves, and low calf recruitment has been implicated as a factor in declining boreal caribou (Rangifer tarandus caribou) populations. We used 11 consecutive years (2006–2016) of aerial survey data to document calf recruitment in a low-density population of boreal woodland caribou in the Northwest Territories, Canada. We measured snow depth in winter and tested two hypotheses: (1) that calf recruitment was lower in winters with greater snow depth and (2) that calf recruitment was lower following winters with greater snow depth (1-year time lag). Recruitment, the number of calves/adult female in March, ranged twofold from 0.23 to 0.45, and snow depth also ranged twofold from 41 to 85 cm. Yet, we found no support for the hypothesis that late-winter snow depth in the current or previous year was inversely related to calf recruitment.  相似文献   

6.
Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics of the gypsy moth, an invasive species in North America, exhibiting outbreaks that are partially synchronized over long distances (approx. 900 km). The factors considered in the MRM were synchrony in weather conditions, spatial proximity and forest-type similarity. We found that the most likely driver of outbreak synchrony is synchronous precipitation. Proximity played no apparent role in influencing outbreak synchrony after accounting for precipitation, suggesting dispersal does not drive outbreak synchrony. Because a previous modelling study indicated weather might indirectly synchronize outbreaks through synchronization of oak masting and generalist predators that feed upon acorns, we also examined the influence of weather and proximity on synchrony of acorn production. As we found for outbreak synchrony, synchrony in oak masting increased with synchrony in precipitation, though it also increased with proximity. We conclude that precipitation could synchronize gypsy moth populations directly, as in a Moran effect, or indirectly, through effects on oak masting, generalist predators or diseases.  相似文献   

7.
Spatially separated populations of many species fluctuate synchronously. Synchrony typically decays with increasing interpopulation distance. Spatial synchrony, and its distance decay, might reflect distance decay of environmental synchrony (the Moran effect), and/or short-distance dispersal. However, short-distance dispersal can synchronize entire metapopulations if within-patch dynamics are cyclic, a phenomenon known as phase locking. We manipulated the presence/absence of short-distance dispersal and spatially decaying environmental synchrony and examined their separate and interactive effects on the synchrony of the protist prey species Tetrahymena pyriformis growing in spatial arrays of patches (laboratory microcosms). The protist predator Euplotes patella consumed Tetrahymena and generated predator-prey cycles. Dispersal increased prey synchrony uniformly over both short and long distances, and did so by entraining the phases of the predator-prey cycles. The Moran effect also increased prey synchrony, but only over short distances where environmental synchrony was strongest, and did so by increasing the synchrony of stochastic fluctuations superimposed on the predator-prey cycle. Our results provide the first experimental demonstration of distance decay of synchrony due to distance decay of the Moran effect. Distance decay of the Moran effect likely explains distance decay of synchrony in many natural systems. Our results also provide an experimental demonstration of long-distance phase locking, and explain why cyclic populations provide many of the most dramatic examples of long-distance spatial synchrony in nature.  相似文献   

8.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   

9.
PabloTedesco  BernardHugueny 《Oikos》2006,115(1):117-127
Spatial synchrony in species abundance is a general phenomenon that has been found in populations representing virtually all major taxa. Dispersal among populations and synchronous stochastic effects (the so called "Moran effect") are the mechanisms most likely to explain such synchrony patterns. Very few studies have related the degree of spatial synchrony to the biological characteristics of species. Here we present a case where specific predictions can be made to relate river fish species characteristics and synchrony determined exclusively by a Moran effect through the expected sensitivity of species to the regional component of environmental stochasticity. By analyzing 23-year time series of abundance estimates in two isolated localities we show that species associated with synchronized reproduction during the wet season, high fecundity, small egg size and high gonado-somatic index (the so called "periodic" strategy) have a higher degree of spatial synchrony in population dynamics than species associated with the opposite traits (the so called "equilibrium" strategy). This is supported by significant relationships (P values <0.01) between species traits and the levels of synchrony after removing taxonomical relatedness. Spatial synchrony computed from summed annual total catches by groups of species, separated into strategy types also showed a significantly higher degree of synchrony for the periodic (r=0.83) than the equilibrium (r=0.46) group. Regional hydrological variability is likely to be partly responsible for the observed synchrony pattern and a regional discharge index showed better relationships with the periodic group, supporting the expected differential effect of regional environmental correlation on population dynamics.  相似文献   

10.
The spatial scale at which populations show synchronous temporal fluctuations in abundance, relative to the spatial scale over which they can disperse, may influence the persistence of local and regional populations. There have been frequent demonstrations of spatial synchrony in population dynamics of animal populations. But few studies have investigated the degree of spatial synchrony in less mobile taxa, e.g. plants, where life history, dispersal and interaction with the environment would be different due to a sessile phase. This study has during three years investigated the synchrony in local population size changes in four short-lived species, and during a nine-year period for one long-lived species, in a semi-natural grassland landscape in southern Sweden. The spatial scale of this study was less than 15 km, which is quite small in comparison with other studies, but the temporal scale was of similar magnitude as the few studies on plant abundances and synchrony. When using detrended estimates of population size change, a significant pattern of decreasing synchrony with increasing distance was found for the two short-lived species that were most confined to manage semi-natural grasslands. Spatial synchrony was detected up to a few km. However, the species displayed synchrony in different years. The degree of synchrony can thus vary considerably across years and among species. Spatially autocorrelated weather conditions could partly explain the spatial scale of synchrony found during certain time intervals. However, the prevailing asynchrony suggests that local factors dominate the dynamics of the populations at the investigated scale.  相似文献   

11.
The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co-fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that isolated populations subject to identical log-linear density-dependent processes should have the same correlation in fluctuations of abundance as the correlation in environmental noise. The contribution from correlated weather to synchrony of populations has later been coined the ‘Moran effect’. Here, we investigate the potential role of the Moran effect in large-scale ecological outcomes of global warming. Although difficult to disentangle from dispersal and species interaction effects, there is compelling evidence from across taxa and ecosystems that spatial environmental synchrony causes population synchrony. Given this, and the accelerating number of studies reporting climate change effects on local population dynamics, surprisingly little attention has been paid to the implications of global warming for spatial population synchrony. However, a handful of studies of insects, birds, plants, mammals and marine plankton indicate decadal-scale changes in population synchrony due to trends in environmental synchrony. We combine a literature review with modeling to outline potential pathways for how global warming, through changes in the mean, variability and spatial autocorrelation of weather, can impact population synchrony over time. This is particularly likely under a ‘generalized Moran effect’, i.e. when relaxing Moran's strict assumption of identical log-linear density-dependence, which is highly unrealistic in the wild. Furthermore, climate change can influence spatial population synchrony indirectly, through its effects on dispersal and species interactions. Because changes in population synchrony may cascade through food-webs, we argue that the (generalized) Moran effect is key to understanding and predicting impacts of global warming on large-scale ecological dynamics, with implications for extinctions, conservation and management.  相似文献   

12.
Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978–2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance.  相似文献   

13.
Spatial synchrony in population dynamics has been identified in most taxonomic groups. Numerous studies have reported varying levels of spatial synchrony among closely‐related species, suggesting that species' characteristics may play a role in determining the level of synchrony. However, few studies have attempted to relate this synchrony to the ecological characteristics and/or life‐history traits of species. Yet, as to some extent the extinction risk may be related to synchrony patterns, identifying a link between species' characteristics and spatial synchrony is crucial, and would help us to define effective conservation planning. Here, we investigated whether species attributes and temperature synchrony (i.e. a proxy of the Moran effect) account for the differences in spatial population synchrony observed in 27 stream fish species in France. After measuring and testing the level of synchrony for each species, we performed a comparative analysis to detect the phylogenetic signal of these levels, and to construct various multi‐predictor models with species traits and temperature synchrony as covariates, while taking phylogenetic relatedness into account. We then performed model averaging on selected models to take model uncertainty into account in our parameter estimates. Fifteen of the 27 species displayed a significant level of synchrony. Synchrony was weak, but highly variable between species, and was not conserved across the phylogeny. We found that some species' characteristics significantly influenced synchrony levels. Indeed, the average model indicated that species associated with greater dispersal abilities, lower thermal tolerance, and opportunistic strategy displayed a higher degree of synchrony. These findings indicate that phylogeny and spatial temperature synchrony do not provide information pertinent for explaining the variations in species' synchrony levels, whereas the dispersal abilities, the life‐history strategies and the upper thermal tolerance limits of species do appear to be quite reliable predictors of synchrony levels.  相似文献   

14.
Huitu O  Norrdahl K  Korpimäki E 《Oecologia》2003,135(2):209-220
Populations of northern small rodents have previously been observed to fluctuate in spatial synchrony over distances ranging from tens to hundreds of kilometers between sites. It has been suggested that this phenomenon is caused by common environmental perturbations, mobile predators or dispersal movements. However, very little focus has been given to how the physical properties of the geographic area over which synchrony occurs, such as landscape composition and climate, affect spatial population dynamics. This study reports on the spatial and temporal properties of vole population fluctuations in two areas of western Finland: one composed of large interconnected areas of agricultural farmland interspersed by forests and the other highly dominated by forest areas, containing more isolated patches of agricultural land. Furthermore, the more agricultural area exhibits somewhat milder winters with less snow than the forested area. We found the amplitude of vole cycles to be essentially the same in the two areas, suggesting that the relative amount of predation on small rodents by generalist versus specialist predators is similar in both areas. No seasonal differences in the timing of synchronization were observable for Microtus voles, whereas bank vole populations in field habitats appeared to become synchronized primarily during winter. Microtus populations in field habitats exhibited smaller spatial variation and a higher degree of synchrony in the more continuous agricultural landscape than in the forest-dominated landscape. We suggest that this inter-areal difference is due to differences in the degree of inter-patch connectivity, with predators and dispersal acting as the primary synchronizing agents. Bank vole populations in field habitats were more synchronized within the forest-dominated landscape, most likely reflecting the suitability of the inter-patch matrix and the possibility of dispersal. Our study clearly indicates that landscape composition needs to be taken into account when describing the spatial properties of small rodent population dynamics.  相似文献   

15.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

16.
Spatial synchronization refers to similarity in temporal variations between spatially separated populations. Three mechanisms have been associated with the spatial synchrony of populations: Moran effect, dispersal and trophic interactions. In this study, we explored the degree of spatial synchrony of three wader species populations (Pied Avocet, Black-winged Stilt and Kentish Plover) using monthly estimates of their abundance in inland lakes of the Iberian Peninsula. The effect of several types of wetland variables (structural, hydroperiod and landscape) on spatial synchronization was explored. Groups of lakes with significant synchronization were identified for all three species. The lakes with wastewater input presented longer hydroperiods than those that did not receive these effluents, and this factor was positively related to the spatial synchrony of the Pied Avocet and Kentish Plover populations. The distance between lakes (used as an indicator of the dispersal effect on synchronization) was significant only in Pied Avocet. No structural or landscape variables were related to spatial synchronization in any species. It was impossible to identify any variable related to the spatial synchronization of Black-winged Stilt abundance as a possible result of the high ecological plasticity of this species. Our data provides the first evidence for mechanisms that act on the spatial synchronizing of wader populations in temporary continental lakes in central Spain, and show that the hydroperiod of lakes acts as an important factor in the spatial synchronization of aquatic species and that its effect is mediated by the reception of urban wastewater.  相似文献   

17.
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.  相似文献   

18.
Snow-covered sea ice plays a significant role in the ecology of the Arctic marine system and is a critical habitat for ice-adapted ringed seals; however, limited research has focused on the role of snow. The first two objectives of this study characterize the spatial and temporal variability in snow over the sea ice of western Hudson Bay measured from satellite (2002–2010) and how this variability relates to ringed seal pup demographic parameters. The final objective uses a regional circulation model (RCM) to estimate the future snow cover within the study area. Results indicated that the snow cover experienced interannual and interseasonal variability, however, typically increased in late spring. In addition, the Moran’s I statistics indicated clustering at small spatial lags for both seasons, suggesting similar snow depths (i.e., large-scale drifting) occurring at distances of 125 km. There was greater interannual variability in the clustering of snow during spring, compared to the winter season. These trends in snow depth were related to variability in seal pup survival; however, seal pup growth and body condition were not related to winter/spring snow conditions. The results from the RCM member runs suggest that snow will decrease by the end of this century, with a larger decrease occurring in the spring period. In addition, there will also be an increase in interannual and spatial variability during both seasons, which may have significant consequences to ringed seal population abundance through reduced pup survival within the study area.  相似文献   

19.
Jörgen Ripa 《Oikos》2000,89(1):175-187
Population synchrony over various geographical scales is known from a large number of taxa. Three main hypotheses have been put forward as explanations to this phenomenon. First, correlated environmental disturbances (so called Moran effect). Moran showed that at least for linear models, the population synchrony would exactly match that of the corresponding environment. Second, the migration, or dispersal, of individuals is liable to cause population synchrony. Third, nomadic predators have been proposed as a synchronising mechanism. In this paper, I analyse the first two explanations by linearizing a general population model with spatial structure. From this linear approximation I derive an expression for the population synchrony. The major results are: 1) Population synchrony can vary significantly depending on the timing of the population census. 2) The environmental correlation is always important. It sets the 'base level' of synchrony. 3) Dispersal is only an effective synchronising mechanism when the local dynamics are at least close to unstable. 4) These results are valid even in a model with delayed density dependence – with possibly cyclic dynamics. Time lag structure has little effect on synchrony. Some of the predictions presented here are supported by data from the literature.  相似文献   

20.
There is limited research on the influence of Pacific‐based climate in large herbivore populations. Additionally, much of our understanding on the effect of large‐scale climate on ungulate population dynamics has occurred on forage‐limited rather than predator‐limited populations. We compared the influence of the Pacific Decadal Oscillation (PDO), North Pacific Index, and local weather on recruitment in a predator‐limited mountain‐dwelling caribou Rangifer tarandus caribou population in the Yukon Territory, Canada, across a range of wolf Canis lupus densities. A large‐scale wolf removal program allowed us to examine the role of Pacific climate and weather when wolves were reduced to ~15% of their pre‐removal levels. Recruitment was best explained by the interaction of wolf density and April‐PDO, with wolf density explaining the most deviance. Predicted recruitment during good springs was 0.45 (SE = 0.04) during wolf removal and 0.29 (SE = 0.03) with no wolf removal. During poor springs (low PDO, increased snow depth) predicted recruitment was 0.55 (SE = 0.10) during wolf removal and 0.12 (SE = 0.03) with no wolf removal. With non‐altered wolf densities, there was a positive relationship between April‐PDO and recruitment due to reduced snow depth at calving, allowing parturient females to disperse up in elevation away from predators. When wolf densities were substantially reduced there was a slight negative relationship between April‐PDO and recruitment, possibly due to a more rapid vegetation green‐up reducing the temporal availability of highly nutritious forage necessary for lactation and subsequent calf growth. Attempts to find general relationships between climate and ungulate population dynamics have proven difficult due to different ecological mechanisms by which climate affects individuals across populations. Temporally varying factors, such as predator density, may also play an important role in uncovering the mechanistic relationship between climate and population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号