首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.  相似文献   

2.
3.
Whether successional forests converge towards an equilibrium in species composition remains an elusive question, hampered by high idiosyncrasy in successional dynamics. Based on long‐term tree monitoring in second‐growth (SG) and old‐growth (OG) forests in Costa Rica, we show that patterns of convergence between pairs of forest stands depend upon the relative abundance of species exhibiting distinct responses to the successional gradient. For instance, forest generalists contributed to convergence between SG and OG forests, whereas rare species and old‐growth specialists were a source of divergence. Overall, opposing trends in taxonomic similarity among different subsets of species nullified each other, producing a net outcome of stasis over time. Our results offer an explanation for the limited convergence observed between pairwise communities and suggest that rare species and old‐growth specialists may be prone to dispersal limitation, while the dynamics of generalists and second‐growth specialists are more predictable, enhancing resilience in tropical secondary forests.  相似文献   

4.
5.

Background

Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities.

Methodology/Principal Findings

Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest.

Conclusions

Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends highlighted in this analysis suggest how plant-soil associations may drive plant distributions and diversity at the local-scale.  相似文献   

6.
Interpretations of successional patterns in ecological communities have traditionally adhered to the dichotomy between the Clementsian view that emphasizes community level processes and the Gleasonian view that stresses individual population responses. The present study evaluates the relative importance of each type of process during protistan primary succession in initially barren aquatic isolates (200-1 plastic pools) over a 170-d period. Species availability to these systems was manipulated by erecting exclosures around individual mesocosms to successively eliminate access to different dispersal vectors responsible for passive protistan dispersal. Increased exclosure significantly reduced access of autotrophs to the pools, but had little effect on heterotroph species availability. The species replacement process was directional through time and occurred at similar rates in all treatments. Both lower and upper temporal boundaries of heterotrophic and autotrophic species were contagious through time, as predicted by the Clementsian hypothesis, although the independence of these two boundary types suggested an individualistic model. Dominant and subdominant species were correlated into four temporal groups: pioneer, early successional, mid-successional, late successional. The dominance of several mid- and late successional species was reduced with increased exclosure. The loss of these species from successional pathways in more exclosed pools had no significant effect on the distribution of other species within the same temporal group. However, the establishment of these other mid- and late successional species may be dependent on initial colonization by pioneer and early successional species. Increased abundances of mid- and late successional species in less exclosed pools coincided with significant attenuations in the distribution of many early successional species. Interactions between successional groups may be related to the supply of inorganic resources as well as allelopathic effects. Patterns of protist succession are the result of both population and community processes; while species-specific characteristics (i.e., dispersal ability) may dominate the process in more isolated systems, increased species availability increases the relative importance of interspecific interactions.  相似文献   

7.
Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8–16 years in eight successional rainforests. We tested whether successional changes in diversity–Δbiomass correlations reflect predictions of niche theories. Diversity–Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid‐successional stands, high biodiversity was associated with greater mortality‐driven biomass loss, i.e. negative selection effects, suggesting successional niche trade‐offs and loss of fast‐growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.  相似文献   

8.
The phylogenetic structure of ecological communities can shed light on assembly processes, but the focus of phylogenetic structure research thus far has been on mature ecosystems. Here, I present the first investigation of phylogenetic community structure during succession. In a replicated chronosequence of 30 sites in northeastern Costa Rica, I found strong phylogenetic overdispersion at multiple scales: species present at local sites were a non-random assemblage, more distantly related than chance would predict. Phylogenetic overdispersion was evident when comparing the species present at each site with the regional species pool, the species pool found in each age category to the regional pool or the species present at each site to the pool of species found in sites of that age category. Comparing stem size classes within each age category, I found that during early succession, phylogenetic overdispersion is strongest in small stems. Overdispersion strengthens and spreads into larger size classes as succession proceeds, corroborating an existing model of forest succession. This study is the first evidence that succession leaves a distinct signature in the phylogenetic structure of communities.  相似文献   

9.
Most large‐scale multispecies studies of tree growth have been conducted in tropical and cool temperate forests, whereas Mediterranean water‐limited ecosystems have received much less attention. This limits our understanding of how growth of coexisting tree species varies along environmental gradients in these forests, and the implications for species interactions and community assembly under current and future climatic conditions. Here, we quantify the absolute effect and relative importance of climate, tree size and competition as determinants of tree growth patterns in Iberian forests, and explore interspecific differences in the two components of competitive ability (competitive response and effect) along climatic and size gradients. Spatially explicit neighborhood models were developed to predict tree growth for the 15 most abundant Iberian tree species using permanent‐plot data from the Spanish Second and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic and size effect on tree growth, but also revealed that competition from neighbors has a comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to competition (i.e. competitive response) of target trees varied markedly along climatic gradients causing significant rank reversals in species performance, particularly under xeric conditions. We also found compelling evidence for strong species‐specific competitive effects in these forests. Altogether, these results constitute critical new information which not only furthers our understanding of important theoretical questions about the assembly of Mediterranean forests, but will also be of help in developing new guidelines for adapting forests in this climatic boundary to global change. If we consider the climatic gradients of this study as a surrogate for future climatic conditions, then we should expect absolute growth rates to decrease and sensitivity to competition to increase in most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these management considerations even more important in the future.  相似文献   

10.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

11.
Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between aboveground vertebrate grazers, subterranean ants, plant-pathogenic soil biota (especially nematodes) and the vegetation in a temperate grassland. We found that when rabbits and cattle locally omit vegetation patches, yellow ants ( Lasius flavus ) respond to the taller vegetation by digging up more sand from deeper soil layers (hence making taller nest mounds), probably to maintain sufficiently high soil temperatures. We found that this ant digging affects other soil biota, as the mounds contain fewer plant-parasitic and fungivore nematodes. Also, the mounds have lower moisture content and soil bulk densities, and higher pH and available nutrient content than the directly surrounding soil. The clonal sedge Carex arenaria grows vigorously on the mounds, producing more shoots and shorter rhizome internode lengths than in surrounding vegetation. Other plant species, such as the grass Festuca rubra , dominate the surrounding vegetation. A greenhouse bioassay experiment revealed that harmful soil organisms (as plant-parasitic nematodes and pathogenic fungi) outweighed the effect of beneficial organisms (e.g., mycorrhizae) in this system. Rhizome biomass and shoot production of C. arenaria were indeed inhibited less by biota in soil from ant mounds than by biota in soil from the surrounding vegetation . However, the total biomass production of C. arenaria was inhibited as strongly in both soil types. F. rubra was inhibited more strongly by biota in the surrounding soil. We suggest that various direct and indirect interactions between above- and belowground biota can contribute to community mosaics and hence diversity in grasslands.  相似文献   

12.
Host-specificity of folivorous insects in a moist tropical forest   总被引:3,自引:0,他引:3  
1. To assess the degree of herbivore host-specificity in the moist tropical forest on Barro Colourado Island, Panama, I conducted an extensive series of feeding trials on the common insect herbivores from 10 tree species.
2. The herbivores were offered leaves from both congeneric and confamilial plant species to their known host species, as well as leaves from the most abundant tree species in the forest.
3. The amount of damage caused by these herbivores to young, expanding leaves was also measured on nine of the tree species.
4. Of 46 herbivores species (seven Coleoptera, one Orthoptera, 38 Lepidoptera), 26% were specialized to a single plant species, 22% were limited to feeding on a single genus and 37% were able to feed on several genera within a single family. The remaining 15% were generalists, able to feed from several different plant families.
5. The causes of leaf damage varied extensively across the tree species. On average, specialist herbivores caused 58% of the damage to young leaves, generalists herbivores 8% and fungal pathogens 34%. For four of the tree species, pathogens were the most important cause of leaf damage.
6. In this forest, most chewing herbivores appear to have fairly narrow diets, and these specialists are responsible for most of the insect herbivory.  相似文献   

13.
14.
Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.  相似文献   

15.
Seed reserves play an essential role during germination and seedling establishment and are particularly important for species that grow in seasonal ecosystems with a short growing season. In this study, we examined (a) how and when the seedlings change their dependence from seed resources to external resources, (b) the lipid, nitrogen, and non-structural carbohydrate reserve translocation from seeds to seedlings over time, and (c) whether reserve translocation may be correlated to cotyledon and leaf lifespan of seedlings for eight tree species in a tropical deciduous forest in north-western Mexico. Our results showed that the cotyledon lifespan was not related to the cotyledon type (photosynthetic or reserve) and that the cotyledon biomass did not decrease significantly until germination. In six of the eight studied species, biomass allocation to the leaves was favored; lipids were the first reserve exhausted before the first leaves were totally expanded in seven of the eight study species. Species with the highest N concentration had expanded leaves and lost their cotyledons faster than species with a low N concentration. Our results suggest that tropical deciduous forest species employ different strategies to survive the dry season and re-sprout in the next growing season mediated by seed reserve concentrations, translocation patterns and subsequent biomass allocation.  相似文献   

16.
17.
The present study investigated the relative importance of leaf and root carbon input for soil invertebrates. Experimental plots were established at the Swiss Canopy Crane (SCC) site where the forest canopy was enriched with 13C depleted CO2 at a target CO2 concentration of c . 540 p.p.m. We exchanged litter between labelled and unlabelled areas resulting in four treatments: (i) leaf litter and roots labelled, (ii) only leaf litter labelled, (iii) only roots labelled and (iv) unlabelled controls. In plots with only 13C-labelled roots most of the soil invertebrates studied were significantly depleted in 13C, e.g. earthworms, chilopods, gastropods, diplurans, collembolans, mites and isopods, indicating that these taxa predominantly obtain their carbon from belowground input. In plots with only 13C-labelled leaf litter only three taxa, including, e.g. juvenile Glomeris spp. (Diplopoda), were significantly depleted in 13C suggesting that the majority of soil invertebrates obtain its carbon from roots. This is in stark contrast to the view that decomposer food webs are based on litter input from aboveground.  相似文献   

18.
Phenological observations on tree species in tropical moist forest of Uttara Kannada district (13ℴ55′ to 15ℴ31′ N lat; 74ℴ9′ to 75ℴ10′ E long) during the years 1983–1985 revealed that there exists a strong seasonality for leaf flush, leaf drop and reproduction. Young leaves were produced in the pre-monsoon dry period with a peak in February, followed by the expansion of leaves which was completed in March. Abscission of leaves occurred in the post-monsoon winter period with a peak in December. There were two peaks for flowering (December and March), while fruit ripening had a single peak in May–June, preceding the monsoon rainfall. The duration of maturation of leaves was the shortest, while that of full ripening of fruits was the longest. Mature flowers of evergreen species lasted longer than those of deciduous species; in contrast the phenophase of ripe fruits of deciduous species was longer than that of evergreen species.  相似文献   

19.
Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half‐mature forest (HF), a mature forest (MF), and an old‐growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.  相似文献   

20.
Although tree ferns are an important component of temperate and tropical forests, very little is known about their ecology. Their peculiar biology (e.g., dispersal by spores and two-phase life cycle) makes it difficult to extrapolate current knowledge on the ecology of other tree species to tree ferns. In this paper, we studied the effects of negative density dependence (NDD) and environmental heterogeneity on populations of two abundant tree fern species, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient. Species patterns harbor information on processes such as competition that can be easily revealed using point pattern analysis techniques. However, its detection may be difficult due to the confounded effects of habitat heterogeneity. Here, we mapped three forest plots along a successional gradient in the montane forests of Southern Ecuador. We employed homogeneous and inhomogeneous K and pair correlation functions to quantify the change in the spatial pattern of different size classes and a case–control design to study associations between juvenile and adult tree ferns. Using spatial estimates of the biomass of four functional tree types (short- and long-lived pioneer, shade- and partial shade-tolerant) as covariates, we fitted heterogeneous Poisson models to the point pattern of juvenile and adult tree ferns and explored the existence of habitat dependencies on these patterns. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号