首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65°C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r2 = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity.  相似文献   

2.
The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1–V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.  相似文献   

3.
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene).  相似文献   

4.
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using 14C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of 14C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)''s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem.  相似文献   

5.
The aim of this study was to evaluate the use of freshwater sediment biodegradation potential as an ecological indicator for monitoring microbial recovery following a decrease in chronic pesticide exposure. For this purpose, a four-year case study (2008–2011) was conducted in a small stream (Morcille river) long exposed to high diuron concentrations, increasing from upstream to downstream. Our results show that the ban on diuron in December 2008 resulted in a progressive decrease in its concentrations in the Morcille river over the survey period. However, diuron remained present in the water three years after the ban. The spatio-temporal variations in the sediment biodegradation potential were assessed by radiorespirometry using [ring-U-14C] diuron to estimate diuron mineralization potentials. Between autumn 2008 and autumn 2011, mean diuron mineralization percentage after 15 weeks of incubation decreased by 65% downstream and by 82% in the intermediate sector, and mean 10% diuron dissipation time values increased between 143% (downstream) and 210% (intermediate). Thus the decrease in the level of chronic diuron exposure in the river also caused a fall in sediment diuron-mineralizing capacities, revealing a corresponding recovery of microbial communities. Our results show that the use of freshwater sediment biodegradation potential may be useful for assessing microbial recovery after a decrease in chronic exposure to pollutants, opening prospects for developing a new class of ecological indicator to monitor the recovery of biological quality of water resources. In this way, the use of molecular approaches based on direct extraction of nucleic acids from environmental matrices and their subsequent analysis by PCR-based approaches to quantify the abundance of pesticide-degrading communities could represent a promising alternative.  相似文献   

6.
The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (<40 μg l−1) changes the microbial community composition. Sediment and groundwater samples were collected inside and outside the herbicide-exposed area and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (100 to 104 g−1 sediment) was determined by most probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophenoxyacetic acid degradation pathway genes tfdA and tfdB (102 to 103 gene copies g−1 sediment) were only detected in sediments from contaminated areas of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4′,6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer.  相似文献   

7.
We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirS), a functional gene of biogeochemical significance. The assay was tested in vitro and applied to environmental samples. The primer-probe set selected was specific for nirS sequences that corresponded approximately to the Pseudomonas stutzeri species. The assay was linear from 1 to 106 gene copies (r2 = 0.999). Variability at low gene concentrations did not allow detection of twofold differences in gene copy number at less than 100 copies. DNA spiking and cell-addition experiments gave predicted results, suggesting that this assay provides an accurate measure of P. stutzeri nirS abundance in environmental samples. Although P. stutzeri abundance was high in lake sediment and groundwater samples, we detected low or no abundance of this species in marine sediment samples from Puget Sound (Wash.) and from the Washington ocean margin. These results suggest that P. stutzeri may not be a dominant marine denitrifier.  相似文献   

8.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations, and consequently, it is frequently detected as a major water contaminant in areas where there is extensive use. We constructed a linuron [N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea]- and diuron-mineralizing two-member consortium by combining the cooperative degradation capacities of the diuron-degrading organism Arthrobacter globiformis strain D47 and the linuron-mineralizing organism Variovorax sp. strain SRS16. Neither of the strains mineralized diuron alone in a mineral medium, but combined, the two strains mineralized 31 to 62% of the added [ring-U-(14)C]diuron to (14)CO(2), depending on the initial diuron concentration and the cultivation conditions. The constructed consortium was used to initiate the degradation and mineralization of diuron in soil without natural attenuation potential. This approach led to the unexpected finding that Variovorax sp. strain SRS16 was able to mineralize diuron in a pure culture when it was supplemented with appropriate growth substrates, making this strain the first known bacterium capable of mineralizing diuron and representatives of both the N,N-dimethyl- and N-methoxy-N-methyl-substituted phenylurea herbicides. The ability of the coculture to mineralize microgram-per-liter levels of diuron was compared to the ability of strain SRS16 alone, which revealed the greater extent of mineralization by the two-member consortium (31 to 33% of the added [ring-U-(14)C]diuron was mineralized to (14)CO(2) when 15.5 to 38.9 mug liter(-1) diuron was used). These results suggest that the consortium consisting of strains SRS16 and D47 could be a promising candidate for remediation of soil and water contaminated with diuron and linuron and their shared metabolite 3,4-dichloroaniline.  相似文献   

9.
An increasing proportion of the Earth''s surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.  相似文献   

10.
Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.  相似文献   

11.
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.  相似文献   

12.
Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.  相似文献   

13.
14.
In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was applied to analyze the microbial communities in lake sediments from Lake Xuanwu, Lake Mochou in Nanjing and Lake Taihu in Wuxi. Sediment samples from seven locations in three lakes were collected and their genomic DNAs were extracted. The DNA yields of the sediments of Lake Xuanwu and Lake Mochou were high (10 μg/g), while that of sediments in Lake Taihu was relatively low. After DNA purification, the 16S rDNA genes (V3 to V5 region) were amplified and the amplified DNA fragments were separated by parallel DGGE. The DGGE profiles showed that there were five common bands in all the lake sediment samples indicating that there were similarities among the populations of microorganisms in all the lake sediments. The DGGE profiles of Lake Xuanwu and Lake Mochou were similar and about 20 types of microorganisms were identified in the sediment samples of both lakes. These results suggest that the sediment samples of these two city lakes (Xuanwu, Mochou) have similar microbial communities. However, the DGGE profiles of sediment samples in Lake Taihu were significantly different from these two lakes. Furthermore, the DGGE profiles of sediment samples in different locations in Lake Taihu were also different, suggesting that the microbial communities in Lake Taihu are more diversified than those in Lake Xuanwu and Lake Mochou. The differences in microbial diversity may be caused by the different environmental conditions, such as redox potential, pH, and the concentrations of organic matters. Seven major bands of 16S rDNA genes fragments from the DGGE profiles of sediment samples were further re-amplified and sequenced. The results of sequencing analysis indicate that five sequences shared 99%–100% homology with known sequences (Bacillus and Brevibacillus, uncultured bacteria), while the other two sequences shared 93%–96% homology with known sequences (Acinetobacter, and Bacillus). The study shows that the PCR-DGGE technique combined with sequence analysis is a feasible and efficient method for the determination of microbial communities in sediment samples. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3610–3616 [译自: 生态学报]  相似文献   

15.
The diversity and ecology of natural communities of the uncultivated bacterium Achromatium oxaliferum were studied by use of culture-independent approaches. 16S rRNA gene sequences were PCR amplified from DNA extracted from highly purified preparations of cells that were morphologically identified as A. oxaliferum present in freshwater sediments from three locations in northern England (Rydal Water, Jenny Dam, Hell Kettles). Cloning and sequence analysis of the PCR-amplified 16S rRNA genes revealed that multiple related but divergent sequences were routinely obtained from the A. oxaliferum communities present in all the sediments examined. Whole-cell in situ hybridization with combinations of fluorescence-labelled oligonucleotide probes revealed that the divergent sequences recovered from purified A. oxaliferum cells corresponded to genetically distinct Achromatium subpopulations. Analysis of the cell size distribution of the genetically distinct subpopulations demonstrated that each was also morphologically distinct. Furthermore, there was a high degree of endemism in the Achromatium sequences recovered from different sediments; identical sequences were never recovered from different sampling locations. In addition to ecological differences that were apparent between Achromatium communities from different freshwater sediments, the distribution of different subpopulations of Achromatium in relation to sediment redox profiles indicated that the genetically and morphologically distinct organisms that coexisted in a single sediment were also ecologically distinct and were adapted to different redox conditions. This result suggests that Achromatium populations have undergone adaptive radiation and that the divergent Achromatium species occupy different niches in the sediments which they inhabit.  相似文献   

16.
Polymerase chain reaction was used to amplify the low copy number of two 16S ribosomal gene fragments from soil and sediment extracts. Total DNA for polymerase chain reaction was extracted from 1 g of seeded or unseeded samples by a rapid freeze-and-thaw method. Amplified DNA fragments can be detected in DNA fractions isolated from seeded soil containing less than 3 Escherichia coli cells and from seeded sediments containing less than 10 cells. This research demonstrated that coupling polymerase chain reaction to direct DNA extraction improves sensitivity by 1 and 2 orders of magnitude for sediments and soils, respectively. This technique could become a powerful tool for genetic ecology studies.  相似文献   

17.
Ammonia oxidation plays a pivotal role in the cycling and removal of nitrogen in aquatic sediments. Certain bacterial groups and a novel group of archaea, which is affiliated with the novel phylum Thaumarchaeota, can perform this initial nitrification step. We examined the diversity and abundance of ammonia-oxidizing β-Proteobacteria (β-AOB) and ammonia-oxidizing archaea (AOA) in the sediments of Chongming eastern tidal flat using the ammonia monooxygenase-α subunit (amoA) gene as functional markers. Clone library analysis showed that AOA had a higher diversity of amoA gene than β-AOB. The β-Proteobacterial amoA community composition correlated significantly with water soluble salts in the sediments, whereas the archaeal amoA community composition was correlated more with nitrate concentrations. Quantitative PCR (qPCR) results indicated that the abundance of β-AOB amoA gene (9.11?×?104–6.47?×?105?copies?g?1 sediment) was always greater than that of AOA amoA gene (7.98?×?103–3.51?×?105?copies?g?1 sediment) in all the samples analyzed in this study. The β-Proteobacterial amoA gene abundance was closely related to organic carbon, while no significant correlations were observed between archaeal amoA gene abundance and the environmental factors. Potential nitrification rates were significantly greater in summer than in winter and correlated strongly with the abundance of amoA genes. Additionally, a greater contribution of single amoA gene to potential nitrification occurred in summer (1.03–5.39 pmol?N?copy?1?day?1) compared with winter (0.16–0.38 pmol?N?copy?1?day?1), suggesting a higher activity of ammonia-oxidizing prokaryotes in warm seasons.  相似文献   

18.
The methane-oxidizing microbial communities inhabiting the bottom sediments of 36 hot springs of the Uzon caldera (Kamchatka, Russia) located in the thermal fields Vostochnoe, Oranzhevoe, and Severnoe, as well as near the lakes Fumarol’noe and Khloridnoe and the Izvilistyi stream, were studied. Methanotrophic bacteria were detected by PCR and FISH in only 8 hot springs. The highest numbers of copies of the pmoA gene (molecular marker of methanotrophy) (2.8 × 107 and 1.1 × 107 copies/mL sediment) were detected in the Kul’turnyi and Kvadrat springs; however, in other springs, the numbers of the pmoA gene copies were significantly lower (5.4 × 103–2.8 × 106 copies/mL sediment). By using the FISH method, only type I methanotrophs were detected in these springs, with their percentage ranging from 0.3 to 20.5% of the total number of eubacteria. PCR-DGGE analysis of the pmoA gene showed that the diversity of methanotrophs was extremely low (no more that two components). Analysis of the deduced PmoA amino acid sequences demonstrated that methanotrophic bacteria of the genus Methylothermus, closely related to representatives of two valid species, widely occurred in the thermal springs near Lake Fumarol’noe. Other bacteria differing considerably from the detected Methylothermus species were detected as well. In the springs with low pH values (2.6–3.8), methanotrophic Gammaproteobacteria most closely related to the genera Methylomonas and Methylobacter were detected for the first time.  相似文献   

19.
A bacterial consortium able to mineralize two herbicides, glyphosate (Pseudomonas 4ASW) and diuron (Arthrobacter sp. N4 and Delftia acidovorans), was cultivated in both a synthetic culture medium without phosphate and a sediment extract medium. In the aim at optimizing glyphosate and diuron mineralization, all the combinations, i.e., free and/or immobilized cells in Ca-alginate beads were tested. With the synthetic medium, the simultaneous mineralization of glyphosate and diuron required at least the immobilization of Pseudomonas 4ASW. Conversely, with the sediment extract medium, only the mineralization of diuron was observed, most probably, because of both nutrient deficiency and phosphate in the sediment extract medium.  相似文献   

20.
Avian and fish botulism outbreaks have been recorded since 1999 in eastern Lake Erie. These outbreaks are caused by Clostridium botulinum type E, a toxin-producing bacteria that is found in anoxic substrates rich in organic material. We studied the environmental conditions present in eastern Lake Erie during 2002, a year when several botulism outbreaks were observed. We also tested for the presence of C. botulinum type E in lake sediments. Samples were taken at six stations from two sites of different depths in the Dunkirk (New York, USA) area. The depth of the sampling sites influenced physico-chemical and biological processes in the sediments. We used the quantitative polymerase chain reaction (Q-PCR) to quantify the levels of C. botulinum type E in the samples. Sediment samples contained a patchy distribution of type E spore concentrations (from not detectable to 5520 DNA copies/mg). Samples of benthic invertebrates tested positive for C. botulinum type E spores in tissues (Gammarus 2028 DNA copies/mg, oligochaetes 428 DNA copies/mg, chironomids 148 DNA copies/mg and dreissenid mussels 715 DNA copies/mg). Principal components analysis (PCA) from inshore stations indicated that a decrease in dissolved oxygen, pH and redox potential near the sediment was associated to an increase in specific conductance and the type E toxin gene in sediments. We also found that C. botulinum type E spores are present in sediments at different depths and at different times through the ice-free season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号