首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Contact order revisited: influence of protein size on the folding rate   总被引:13,自引:0,他引:13       下载免费PDF全文
Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L(2/3), and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs_CO = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs_CO scales with the protein chain length as L(0.70 +/- 0.07) for the totality of studied single-domain proteins and peptides.  相似文献   

2.
Due to Plaxco, Simons, Baker and others, it is now well known that the two-state single domain protein folding rate is fairly well predicted from knowledge of the topology of the native structure. Plaxco et al found that the folding rates of two-state proteins correlate with the average degree to which native contacts are 'local' within the chain sequence: fast-folders usually have mostly local structures. Here, we dissected the native topology further by focusing on non-local and local contacts using lower and upper bounds of allowable sequence separation in computing the average contact order. We analyzed non-local and local contacts of 82 two-state proteins whose experimental folding rates span over six orders of magnitude. We observed that both the number of non-local contacts and the average sequence separation of non-local contacts (non-local CO) are both negatively correlated with the folding rate, showing that the non-local contacts dominate the barrier-crossing process. Surprisingly, the local contact orders of the proteins also correlate with the folding rates. However, this correlation shows a strong positive trend indicating the role of a diffusive search in the denatured basin.  相似文献   

3.
4.
The relative folding rates of simple, single-domain proteins, proteins whose folding energy landscapes are smooth, are highly dispersed and strongly correlated with native-state topology. In contrast, the relative folding rates of small, Gō-potential lattice polymers, which also exhibit smooth energy landscapes, are poorly dispersed and insignificantly correlated with native-state topology. Here, we investigate this discrepancy in light of a recent, quantitative theory of two-state folding kinetics, the topomer search model. This model stipulates that the topology-dependence of two-state folding rates is a direct consequence of the extraordinarily cooperative equilibrium folding of simple proteins. We demonstrate that traditional Gō polymers lack the extreme cooperativity that characterizes the folding of naturally occurring, two-state proteins and confirm that the folding rates of a diverse set of Gō 27-mers are poorly dispersed and effectively uncorrelated with native state topology. Upon modestly increasing the cooperativity of the Gō-potential, however, significantly increased dispersion and strongly topology-dependent kinetics are observed. These results support previous arguments that the cooperative folding of simple, single-domain proteins gives rise to their topology-dependent folding rates. We speculate that this cooperativity, and thus, indirectly, the topology-rate relationship, may have arisen in order to generate the smooth energetic landscapes upon which rapid folding can occur.  相似文献   

5.
Protein folding speeds are known to vary over more than eight orders of magnitude. Plaxco, Simons, and Baker (see References) first showed a correlation of folding speed with the topology of the native protein. That and subsequent studies showed, if the native structure of a protein is known, its folding speed can be predicted reasonably well through a correlation with the "localness" of the contacts in the protein. In the present work, we develop a related measure, the geometric contact number, N (alpha), which is the number of nonlocal contacts that are well-packed, by a Voronoi criterion. We find, first, that in 80 proteins, the largest such database of proteins yet studied, N (alpha) is a consistently excellent predictor of folding speeds of both two-state fast folders and more complex multistate folders. Second, we show that folding rates can also be predicted from amino acid sequences directly, without the need to know the native topology or other structural properties.  相似文献   

6.
We have collected the kinetic folding data for non-two-state and two-state globular proteins reported in the literature, and investigated the relationships between the folding kinetics and the native three-dimensional structure of these proteins. The rate constants of formation of both the intermediate and the native state of non-two-state folders were found to be significantly correlated with protein chain length and native backbone topology, which is represented by the absolute contact order and sequence-distant native pairs. The folding rate of two-state folders, which is known to be correlated with the native backbone topology, apparently does not correlate significantly with protein chain length. On the basis of a comparison of the folding rates of the non-two-state and two-state folders, it was found that they are similarly dependent on the parameters that reflect the native backbone topology. This suggests that the mechanisms behind non-two-state and two-state folding are essentially identical. The present results lead us to propose a unified mechanism of protein folding, in which folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the intermediate. Apparently, two-state folding is merely a simplified version of hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.  相似文献   

7.
We develop a simple model for computing the rates and routes of folding of two-state proteins from the contact maps of their native structures. The model is based on the graph-theoretical concept of effective contact order (ECO). The model predicts that proteins fold by "zipping up" in a sequence of small-loop-closure events, depending on the native chain fold. Using a simple equation, with a few physical rate parameters, we obtain a good correlation with the folding rates of 24 two-state folding proteins. The model rationalizes data from Phi-value analysis that have been interpreted in terms of delocalized or polarized transition states. This model indicates how much of protein folding may take place in parallel, not along a single reaction coordinate or with a single transition state.  相似文献   

8.
Kuznetsov IB  Rackovsky S 《Proteins》2004,54(2):333-341
Small single-domain proteins that fold by simple two-state kinetics have been shown to exhibit a wide variation in their folding rates. It has been proposed that folding mechanisms in these proteins are largely determined by the native-state topology, and a significant correlation between folding rate and measures of the average topological complexity, such as relative contact order (RCO), has been reported. We perform a statistical analysis of folding rate and RCO in all three major structural classes (alpha, beta, and alpha/beta) of small two-state proteins and of RCO in groups of analogous and homologous small single-domain proteins with the same topology. We also study correlation between folding rate and the average physicochemical properties of amino acid sequences in two-state proteins. Our results indicate that 1) helical proteins have statistically distinguishable, class-specific folding rates; 2) RCO accounts for essentially all the variation of folding rate in helical proteins, but for only a part of the variation in beta-sheet-containing proteins; and 3) only a small fraction of the protein topologies studied show a topology-specific RCO. We also report a highly significant correlation between the folding rate and average intrinsic structural propensities of protein sequences. These results suggest that intrinsic structural propensities may be an important determinant of the rate of folding in small two-state proteins.  相似文献   

9.
It is a challenging task to understand the relationship between sequences and folding rates of proteins. Previous studies are found that one of contact order (CO), long-range order (LRO), total contact distance (TCD), chain topology parameter (CTP), and effective length (Leff) has a significant correlation with folding rate of proteins. In this paper, we introduce a new parameter called n-order contact distance (nOCD) and use it to predict folding rate of proteins with two- and three-state folding kinetics. A good linear correlation between the folding rate logarithm lnkf and nOCD with n=1.2, alpha=0.6 is found for two-state folders (correlation coefficient is -0.809, P-value<0.0001) and n=2.8, alpha=1.5 for three-state folders (correlation coefficient is -0.816, P-value<0.0001). However, this correlation is completely absent for three-state folders with n=1.2, alpha=0.6 (correlation coefficient is 0.0943, P-value=0.661) and for two-state folders with n=2.8, alpha=1.5 (correlation coefficient is -0.235, P-value=0.2116). We also find that the average number of contacts per residue Pm in the interval of m for two-state folders is smaller than that for three-state folders. The probability distribution P(gamma) of residue having gamma pairs of contacts fits a Gaussian distribution for both two- and three-state folders. We observe that the correlations between square radius of gyration S2 and number of residues for two- and three-state folders are both good, and the correlation coefficient is 0.908 and 0.901, and the slope of the fitting line is 1.202 and 0.795, respectively. Maybe three-state folders are more compact than two-state folders. Comparisons with nTCD and nCTP are also made, and it is found that nOCD is the best one in folding rate prediction.  相似文献   

10.
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.  相似文献   

11.
Kaya H  Chan HS 《Proteins》2003,52(4):524-533
Physical mechanisms underlying the empirical correlation between relative contact order (CO) and folding rate among naturally occurring small single-domain proteins are investigated by evaluating postulated interaction schemes for a set of three-dimensional 27mer lattice protein models with 97 different CO values. Many-body interactions are constructed such that contact energies become more favorable when short chain segments sequentially adjacent to the contacting residues adopt native-like conformations. At a given interaction strength, this scheme leads to folding rates that are logarithmically well correlated with CO (correlation coefficient r = 0.914) and span more than 2.5 orders of magnitude, whereas folding rates of the corresponding Gō models with additive contact energies have much less logarithmic correlation with CO and span only approximately one order of magnitude. The present protein chain models also exhibit calorimetric cooperativity and linear chevron plots similar to that observed experimentally for proteins with apparent simple two-state folding/unfolding kinetics. Thus, our findings suggest that CO-dependent folding rates of real proteins may arise partly from a significant positive coupling between nonlocal contact favorabilities and local conformational preferences.  相似文献   

12.
Small monomeric proteins often fold in apparent two-state processes with folding speeds dictated by their native-state topology. Here we test, for the first time, the influence of monomer topology on the folding speed of an oligomeric protein: the heptameric cochaperonin protein 10 (cpn10), which in the native state has seven beta-barrel subunits noncovalently assembled through beta-strand pairing. Cpn10 is a particularly useful model because equilibrium-unfolding experiments have revealed that the denatured state in urea is that of a nonnative heptamer. Surprisingly, refolding of the nonnative cpn10 heptamer is a simple two-state kinetic process with a folding-rate constant in water (2.1 sec(-1); pH 7.0, 20 degrees C) that is in excellent agreement with the prediction based on the native-state topology of the cpn10 monomer. Thus, the monomers appear to fold as independent units, with a speed that correlates with topology, although the C and N termini are trapped in beta-strand pairing with neighboring subunits. In contrast, refolding of unfolded cpn10 monomers is dominated by a slow association step.  相似文献   

13.
Many single-domain proteins exhibit two-state folding kinetics, with folding rates that span more than six orders of magnitude. A quantity of much recent interest for such proteins is their contact order, the average separation in sequence between contacting residue pairs. Numerous studies have reached the surprising conclusion that contact order is well-correlated with the logarithm of the folding rate for these small, well-characterized molecules. Here, we investigate the physico-chemical basis for this finding by asking whether contact order is actually a composite number that measures the fraction of local secondary structure in the protein; viz. turns, helices, and hairpins. To pursue this question, we calculated the secondary structure content for 24 two-state proteins and obtained coefficients that predict their folding rates. The predicted rates correlate strongly with experimentally determined rates, comparable to the correlation with contact order. Further, these predicted folding rates are correlated strongly with contact order. Our results suggest that the folding rate of two-state proteins is a function of their local secondary structure content, consistent with the hierarchic model of protein folding. Accordingly, it should be possible to utilize secondary structure prediction methods to predict folding rates from sequence alone.  相似文献   

14.
Folding rates of small single-domain proteins that fold through simple two-state kinetics can be estimated from details of the three-dimensional protein structure. Previously, predictions of secondary structure had been exploited to predict folding rates from sequence. Here, we estimate two-state folding rates from predictions of internal residue-residue contacts in proteins of unknown structure. Our estimate is based on the correlation between the folding rate and the number of predicted long-range contacts normalized by the square of the protein length. It is well known that long-range order derived from known structures correlates with folding rates. The surprise was that estimates based on very noisy contact predictions were almost as accurate as the estimates based on known contacts. On average, our estimates were similar to those previously published from secondary structure predictions. The combination of these methods that exploit different sources of information improved performance. It appeared that the combined method reliably distinguished fast from slow two-state folders.  相似文献   

15.
For apparently two-state proteins, we found that the size (number of folded residues) of a transition state is mostly encoded by the topology, defined by total contact distance (TCD) of the native state, and correlates with its folding rate. This is demonstrated by using a simple procedure to reduce the native structures of the 41 two-state proteins with native TCD as a constraint, and is further supported by analyzing the results of eight proteins from protein engineering studies. These results support the hypothesis that the major rate-limiting process in the folding of small apparently two-state proteins is the search for a critical number of residues with the topology close to that of the native state.  相似文献   

16.
To what extent do general features of folding/unfolding kinetics of small globular proteins follow from their thermodynamic properties? To address this question, we investigate a new simplified protein chain model that embodies a cooperative interplay between local conformational preferences and hydrophobic burial. The present four-helix-bundle 55mer model exhibits protein-like calorimetric two-state cooperativity. It rationalizes native-state hydrogen exchange observations. Our analysis indicates that a coherent, self-consistent physical account of both the thermodynamic and kinetic properties of the model leads naturally to the concept of a native state ensemble that encompasses considerable conformational fluctuations. Such a multiple-conformation native state is seen to involve conformational states similar to those revealed by native-state hydrogen exchange. Many of these conformational states are predicted to lie below native baselines commonly used in interpreting calorimetric data. Folding and unfolding kinetics are studied under a range of intrachain interaction strengths as in experimental chevron plots. Kinetically determined transition midpoints match well with their thermodynamic counterparts. Kinetic relaxations are found to be essentially single-exponential over an extended range of model interaction strengths. This includes the entire unfolding regime and a significant part of a folding regime with a chevron rollover, as has been observed for real proteins that fold with non-two-state kinetics. The transition state picture of protein folding and unfolding is evaluated by comparing thermodynamic free energy profiles with actual kinetic rates. These analyses suggest that some chevron rollovers may arise from an internal frictional effect that increasingly impedes chain motions with more native conditions, rather than being caused by discrete deadtime folding intermediates or shifts of the transition state peak as previously posited.  相似文献   

17.
Proteins can sample a variety of partially folded conformations during the transition between the unfolded and native states. Some proteins never significantly populate these high-energy states and fold by an apparently two-state process. However, many proteins populate detectable, partially folded forms during the folding process. The role of such intermediates is a matter of considerable debate. A single amino acid change can convert Escherichia coli ribonuclease H from a three-state folder that populates a kinetic intermediate to one that folds in an apparent two-state fashion. We have compared the folding trajectories of the three-state RNase H and the two-state RNase H, proteins with the same native-state topology but altered regional stability, using a protein engineering approach. Our data suggest that both versions of RNase H fold through a similar trajectory with similar high-energy conformations. Mutations in the core and the periphery of the protein affect similar aspects of folding for both variants, suggesting a common trajectory with folding of the core region followed by the folding of the periphery. Our results suggest that formation of specific partially folded conformations may be a general feature of protein folding that can promote, rather than hinder, efficient folding.  相似文献   

18.
Micheletti C 《Proteins》2003,51(1):74-84
A variety of experimental and theoretical studies have established that the folding process of monomeric proteins is strongly influenced by the topology of the native state. In particular, folding times have been shown to correlate well with the contact order, a measure of contact locality. Our investigation focuses on identifying additional topologic properties that correlate with experimentally measurable quantities, such as folding rates and transition-state placement, for both two- and three-state folders. The validation against data from 40 experiments shows that a particular topological property that measures the interdependence of contacts, termed cliquishness or clustering coefficient, can account with statistically significant accuracy both for the transition state placement and especially for folding rates. The observed correlations can be further improved by optimally combining the distinct topological information captured by cliquishness and contact order.  相似文献   

19.
Although the folding rates of proteins have been studied extensively, both experimentally and theoretically, and many native state topological parameters have been proposed to correlate with or predict these rates, unfolding rates have received much less attention. Moreover, unfolding rates have generally been thought either to not relate to native topology in the same manner as folding rates, perhaps depending on different topological parameters, or to be more difficult to predict. Using a dataset of 108 proteins including two-state and multistate folders, we find that both unfolding and folding rates correlate strongly, and comparably well, with well-established measures of native topology, the absolute contact order and the long range order, with correlation coefficient values of 0.75 or higher. In addition, compared to folding rates, the absolute values of unfolding rates vary more strongly with native topology, have a larger range of values, and correlate better with thermodynamic stability. Similar trends are observed for subsets of different protein structural classes. Taken together, these results suggest that choosing a scaffold for protein engineering may require a compromise between a simple topology that will fold sufficiently quickly but also unfold quickly, and a complex topology that will unfold slowly and hence have kinetic stability, but fold slowly. These observations, together with the established role of kinetic stability in determining resistance to thermal and chemical denaturation as well as proteases, have important implications for understanding fundamental aspects of protein unfolding and folding and for protein engineering and design.  相似文献   

20.
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of the native protein, where most of the native interactions are partially established. The transition state of AcP turns out to be remarkably similar in structure to that of the activation domain of procarboxypeptidase A2 (ADA2h), a protein having the same overall topology but sharing only 13% sequence identity with AcP. This suggests that transition states are conserved between proteins with the same native fold. Comparison of the rates of folding of AcP and four other proteins with the same topology, including ADA2h, supports the concept that the average distance in sequence between interacting residues (that is, the contact order) is an important determinant of the rate of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号