首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

2.
Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40?cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects. In the first 9?years of a long-term C sequestration study in eastern Nebraska, USA, switchgrass and maize with best management practices had average annual increases in SOC per hectare that exceed 2?Mg?C?year?1 (7.3?Mg?CO2?year?1) for the 0 to 150 soil depth. For both switchgrass and maize, over 50?% of the increase in SOC was below the 30?cm depth. SOC sequestration by switchgrass was twofold to fourfold greater than that used in models to date which also assumed no SOC sequestration by maize. The results indicate that N fertilizer rates and harvest management regimes can affect the magnitude of SOC sequestration. The use of uniform soil C effects for bioenergy crops from sampling depths of 30 to 40?cm across agro-ecoregions for large scale LCA is questionable.  相似文献   

3.
The United States Great Lakes Region (USGLR) is a critical geographic area for future bioenergy production. Switchgrass (Panicum virgatum) is widely considered a carbon (C)‐neutral or C‐negative bioenergy production system, but projected increases in air temperature and precipitation due to climate change might substantially alter soil organic C (SOC) dynamics and storage in soils. This study examined long‐term SOC changes in switchgrass grown on marginal land in the USGLR under current and projected climate, predicted using a process‐based model (Systems Approach to Land‐Use Sustainability) extensively calibrated with a wealth of plant and soil measurements at nine experimental sites. Simulations indicate that these soils are likely a net C sink under switchgrass (average gain 0.87 Mg C ha?1 year?1), although substantial variation in the rate of SOC accumulation was predicted (range: 0.2–1.3 Mg C ha?1 year?1). Principal component analysis revealed that the predicted intersite variability in SOC sequestration was related in part to differences in climatic characteristics, and to a lesser extent, to heterogeneous soils. Although climate change impacts on switchgrass plant growth were predicted to be small (4%–6% decrease on average), the increased soil respiration was predicted to partially negate SOC accumulations down to 70% below historical rates in the most extreme scenarios. Increasing N fertilizer rate and decreasing harvest intensity both had modest SOC sequestration benefits under projected climate, whereas introducing genotypes better adapted to the longer growing seasons was a much more effective strategy. Best‐performing adaptation scenarios were able to offset >60% of the climate change impacts, leading to SOC sequestration 0.7 Mg C ha?1 year?1 under projected climate. On average, this was 0.3 Mg C ha?1 year?1 more C sequestered than the no adaptation baseline. These findings provide crucial knowledge needed to guide policy and operational management for maximizing SOC sequestration of future bioenergy production on marginal lands in the USGLR.  相似文献   

4.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

5.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

6.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

7.
The capacity of perennial grasses to affect change in soil properties is well documented but information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. An on‐farm study (10 fields) in North Dakota, South Dakota, and Nebraska was sampled before switchgrass establishment and after 5 years to determine changes in soil bulk density (SBD), pH, soil phosphorus (P), and equivalent mass soil organic carbon (SOC). Changes in SBD were largely constrained to near‐surface depths (0–0.05 m). SBD increased (0–0.05 m) at the Nebraska locations (mean=0.16 Mg m?3), while most South Dakota and North Dakota locations showed declines in SBD (mean=?0.18 Mg m?3; range=?0.42–0.07 Mg m?3). Soil pH change was significant at five of the 10 locations at near surface depths (0–0.05 m), but absolute changes were modest (range=?0.67–0.44 pH units). Available P declined at all sites where it was measured (North Dakota and South Dakota locations). When summed across the surface 0.3 m depth, annual decreases in available P averaged 1.5 kg P ha?1 yr?1 (range=0.5–2.8 kg P ha?1 yr?1). Averaged across locations, equivalent mass SOC increased by 0.5 and 2.4 Mg C ha?1 yr?1 for the 2500 and 10 000 Mg ha?1 soil masses, respectively. Results from this study underscore the contribution of switchgrass to affect soil property changes, though considerable variation in soil properties exists within and across locations.  相似文献   

8.
This study evaluated the effects of tree species and sites on soil carbohydrates, litterfall, and litter chemistry in 2-, 4- and 10-year-old improved fallows at three sites in eastern Zambia. Between April 2002 and August 2003, litter was collected in 2-year-old tree fallows at Kalichero, Kalunga and Msekera for chemical analyses. Soil samples collected at 0–30 cm from all experiments were analysed for total soil organic carbon (SOC), but only those from 4- and 10-year-old fallows were analysed for carbohydrates. Soil arabinose- and mannose-C stocks, and carbohydrate-C percentages of SOC (7.7–20.6 %) significantly (P < 0.05) differed across tree species in 10-year-old coppicing fallows at Msekera. Converting M + F to improved fallows resulted in a decline in monosaccharide-C, carbohydrate-C stocks and carbohydrate-C percentage of SOC. There were significant (P < 0.05) variations in litterfall (0.7–2.3 t ha?1 year?1) and litter C contents (0.3–1.1 t ha?1 year?1) across 2-year-old coppicing tree fallows at Msekera. Litter production and C contents were significantly greater on sandy soils at Kalunga than on fine-textured soils at Msekera. Litter chemical contents (C, N, AUR and polyphenols) and ratios (C:N, P:N, AUR:N, and (AUR + P):N) for litter in fallows differed significantly (P < 0.05) across species and sites. In this study, the role of litter in carbon cycling in improved fallows depended on tree species and site conditions.  相似文献   

9.
Biofuel crops may help achieve the goals of energy‐efficient renewable ethanol production and greenhouse gas (GHG) mitigation through carbon (C) storage. The objective of this study was to compare the aboveground biomass yields and soil organic C (SOC) stocks under four crops (no‐till corn, switchgrass, indiangrass, and willow) 7 years since establishment at three sites in Ohio to determine if high‐yielding biofuel crops are also capable of high levels of C storage. Corn grain had the highest potential ethanol yields, with an average of more than 4100 L ha?1, and ethanol yields increased if both corn grain and stover were converted to biofuel, while willow had the lowest yields. The SOC concentration in soils under biofuels was generally unaffected by crop type; at one site, soil in the top 10 cm under willow contained nearly 13 Mg C ha?1 more SOC (or 29% more) than did soils under switchgrass or corn. Crop type affected SOC content of macroaggregates in the top 10 cm of soil, where macroaggregates in soil under corn had lower C, N and C : N ratios than those under perennial grasses or trees. Overall, the results suggest that no‐till corn is capable of high ethanol yields and equivalent SOC stocks to 40 cm depth. Long‐term monitoring and measurement of SOC stocks at depth are required to determine whether this trend remains. In addition, ecological, energy, and GHG assessments should be made to estimate the C footprint of each feedstock.  相似文献   

10.
Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal. DAYCENT estimations of stover yields were correlated and reasonably accurate (adjusted r 2?=?0.53, slope?=?1.18, p?<<?0.001, intercept?=?0.36, p?=?0.11). Measured and simulated average grain yields across sites did not differ as a function of residue removal, but the model tended to underestimate average measured grain yields. Modeled and measured soil organic carbon (SOC) change for all sites were correlated (adjusted r 2?=?0.54, p?<<?0.001), but DAYCENT overestimated SOC loss with conventional tillage. Simulated and measured SOC change did not vary by residue removal rate. DAYCENT simulated annual N2O flux more accurately at low rates (≤2-kg N2O-N ha?1 year?1) but underestimated when emission rates were >3-kg N2O-N ha?1 year?1. Overall, DAYCENT performed well at simulating stover yields and low N2O emission rates, reasonably well when simulating the effects of management practices on average grain yields and SOC change, and poorly when estimating high N2O emissions. These biases should be considered when DAYCENT is used as a decision support tool for recommending sustainable corn stover removal practices to advance bioenergy industry based on corn stover feedstock material.  相似文献   

11.

Purpose

Adoption of the carbon (C)-friendly and cleaner technology is an effective solution to offset some of the anthropogenic emissions. Conservation tillage is widely considered as an important sustainable technology and for the development of conservation agriculture (CA). Thus, the objective of this study was to assess the C sustainability of different tillage systems in a double rice (Oryza sativa L.) cropping system in southern China.

Methods

The experiment was established with no-till (NT), rotary tillage (RT), and conventional tillage (CT) treatments since 2005. Emission of greenhouse gasses (GHG), C footprint (CF), and ecosystem service through C sequestration in different tillage systems were compared.

Result and discussion

Emission of GHG from agricultural inputs (Mg CO2-eq ha?1 year?1) ranged from 1.81 to 1.97 for the early rice, 1.82 to 1.98 for the late rice, and 3.63 to 3.95 for the whole growing season, respectively. The CF (kg CO2-eq kg?1 of rice year?1) in the whole growing seasons were 1.27, 1.85, and 1.40 [excluding soil organic carbon (SOC) storage] and 0.54, 1.20, and 0.72 (including SOC storage) for NT, RT, and CT, respectively. The value of ecosystem services on C sequestration for the whole growing seasons ranged from ¥3,353 to 4,948 ha?1 year?1 and followed the order of NT > CT > RT. The C sustainability under NT was better than that under RT for the late, but reversed for the early rice. However, NT system had better C sustainability for the whole cropping system compared with CT.

Conclusions

Therefore, NT is a preferred technology to reduce GHG emissions, increase ecosystem service functions of C sequestration, and improve C sustainability in a double rice cropping region of Southern China.  相似文献   

12.
Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha?1 year?1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates >?131 kg N ha?1 year?1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha?1 year?1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha?1 year?1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year?1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.  相似文献   

13.
Previous greenhouse gas (GHG) assessments for the shrub willow biomass crops (SWBC) production system lacked quantitative data on the soil CO2 efflux (Fc). This study quantifies the mean annual cumulative Fc, the C sequestration in the above- and belowground biomass, and the carbon balance of the production system. We utilized four SWBC fields, which have been in production for 5, 12, 14, and 19 years. Two treatments were applied: continuous production (CP)—shrub willows were harvested, and stools were allowed to regrow, and tear-out (TO) (crop removal)—shrub willows were harvested, and stools were sprayed with herbicide following spring, crushed, and mixed into the soil. Mean annual cumulative Fc were measured using dynamic closed chambers (LI-8100A and LI-8150). Across different age classes, the mean cumulative Fc ranged from 27.2 to 35.5 Mg CO2 ha?1 year?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 year?1 for TO. The combined carbon (C) sequestration of the standing above- and belowground biomass, excluding stems, ranged from 50.6 to 94.8 Mg CO2 eqv. ha?1. In the CP treatment, the annual C sequestration in the fine roots and foliage offsets the annual cumulative Fc. Across different age classes, C balances ranged from ?21.5 to ?59.3 Mg CO2 ha?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 for TO. The GHG potential of SWBC is about ?36.3 Mg CO2 eqv. ha?1 at the end of 19 years, suggesting that the SWBC system sequesters C until termination of the crop.  相似文献   

14.
Energy crops for biofuel production, especially switchgrass (Panicum virgatum), are of interest from a climate change perspective. Here, we use outputs from a crop growth model and life cycle assessment (LCA) to examine the global warming intensity (GWI; g CO2 MJ−1) and greenhouse gas (GHG) mitigation potential (Mg CO2 year−1) of biofuel systems based on a spatially explicit analysis of switchgrass grown on marginal land (abandoned former cropland) in Michigan, USA. We find that marginal lands in Michigan can annually produce over 0.57 hm3 of liquid biofuel derived from nitrogen-fertilized switchgrass, mitigating 1.2–1.5 Tg of CO2 year−1. About 96% of these biofuels can meet the Renewable Fuel Standard (60% reduction in lifecycle GHG emissions compared with conventional gasoline; GWI ≤37.2 g CO2 MJ−1). Furthermore, 73%–75% of these biofuels are carbon-negative (GWI less than zero) due to enhanced soil organic carbon (SOC) sequestration. However, simulations indicate that SOC levels would fail to increase and even decrease on the 11% of lands where SOC stocks >>200 Mg C ha−1, leading to carbon intensities greater than gasoline. Results highlight the strong climate mitigation potential of switchgrass grown on marginal lands as well as the needs to avoid carbon rich soils such as histosols and wetlands and to ensure that productivity will be sufficient to provide net mitigation.  相似文献   

15.

Aims

Grassland conversion to cropland (GCC) may result in loss of a large amount of soil organic carbon (SOC). However, the assessment of such loss of SOC still involves large uncertainty due to shallow sampling depth, soil bulk density estimation and spatial heterogeneity. Our objectives were to quantify changes in SOC, soil total nitrogen (STN) and C:N ratio in 0–100 cm soil profile after GCC and to clarify factors influencing the SOC change.

Methods

A nest-paired sampling design was used in six sites along a temperature gradient in Northeast China.

Results

SOC change after GCC ranged from ?17 to 0 Mg ha?1 in 0–30 cm soil layer, recommended by IPCC, across the six sites, but ranged from ?30 to 7 Mg ha?1 when considering 0–100 cm. We found a linear relationship between SOC change in 30–100 cm and that in 0–30 cm profile (ΔC30?100?=?0.35ΔC0?30, P?<?0.001), suggesting that SOC change in 0–100 cm was averagely 35 % higher than that in 0–30 cm. The change in STN showed a similar pattern to SOC, and soil C:N ratio did not change at most of sites. On the other hand, SOC loss after GCC was greater in soils with higher initial SOC content or in croplands without applying chemical fertilizers. Furthermore, SOC loss after GCC decreased with falling mean annual temperature (MAT), and even vanished in the coldest sites.

Conclusions

The magnitude of SOC loss following GCC in Northeast China is lower than the global average value, partly due to low MAT here. However, the current low SOC loss can be intensified by remarkable climate warming in this region.  相似文献   

16.
Corn’s (Zea mays L.) stover is a potential nonfood, herbaceous bioenergy feedstock. A vital aspect of utilizing stover for bioenergy production is to establish sustainable harvest criteria that avoid exacerbating soil erosion or degrading soil organic carbon (SOC) levels. Our goal is to empirically estimate the minimum residue return rate required to sustain SOC levels at numerous locations and to identify which macroscale factors affect empirical estimates. Minimum residue return rate is conceptually useful, but only if the study is of long enough duration and a relationship between the rate of residue returned and the change in SOC can be measured. About one third of the Corn Stover Regional Partnership team (Team) sites met these criteria with a minimum residue return rate of 3.9?±?2.18 Mg stover ha?1 yr?1, n?=?6. Based on the Team and published corn-based data (n?=?35), minimum residue return rate was 6.38?±?2.19 Mg stover ha?1 yr?1, while including data from other cropping systems (n?=?49), the rate averaged 5.74?±?2.36 Mg residue ha?1 yr?1. In broad general terms, keeping about 6 Mg residue ha?1 yr?1 maybe a useful generic rate as a point of discussion; however, these analyses refute that a generic rate represents a universal target on which to base harvest recommendations at a given site. Empirical data are needed to calibrate, validate, and refine process-based models so that valid sustainable harvest rate guidelines are provided to producers, industry, and action agencies.  相似文献   

17.
Responses of soil organic carbon (SOC) cycling and C budget in forest ecosystems to elevated nitrogen (N) deposition are divergent. Little is known about the N critical loads for the shift between gain and loss of SOC storage in the old-growth temperate forest of Northeast China. The objective of this study was to investigate the nonlinear responses of SOC concentration and composition to multiple rates of N addition, as well as the microbial mechanisms responsible for SOC alteration under N enrichment. Nine rates of urea addition (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha?1 year?1) with 4 replicates for each treatment were conducted. Soil samples in the 0–10 cm mineral layer were taken after 3 years of N fertilization. Soil aggregate size distribution and SOC physical fractionation were performed to examine SOC dynamics. Phospholipid fatty acid (PLFA) technique was used to measure the abundance and structure of microbial community. Three years of N addition led to significant increases in the concentrations of soil particulate organic C and aggregate-associated organic C fractions only. The responses of total N and each labile SOC fraction to the rates of N addition followed Gaussian equations, with the N critical loads being estimated to be between 80 and 100 kg N ha?1 year?1. The change in SOC concentration (ΔSOC) was positively correlated with the changes in aggregate associated OC (r2 > 0.80) and POC concentrations (r2 > 0.50). Significant correlations among the concentrations of labile SOC fractions, the percentages of soil aggregates, and the abundances of microbial PLFAs were observed, which implies a close linkage between microbial community structure and SOC accumulation and stability. Our results suggest that increase in soil moisture and shift of microbial community structure could control the critical N load for the switch between C accumulation and loss. The current N deposition rate (~ 11 kg N ha?1 year?1) to the northeast China’s forests is favorable for soil C accumulation over the short term.  相似文献   

18.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

19.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

20.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号