首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Singh N  Jabeen T  Somvanshi RK  Sharma S  Dey S  Singh TP 《Biochemistry》2004,43(46):14577-14583
Phospholipase A(2) (PLA(2); EC 3.1.1.4) is a key enzyme involved in the production of proinflammatory mediators known as eicosanoids. The binding of the substrate to PLA(2) occurs through a well-formed hydrophobic channel. To determine the viability of PLA(2) as a target molecule for the structure-based drug design against inflammation, arthritis, and rheumatism, the crystal structure of the complex of PLA(2) with a known anti-inflammatory compound oxyphenbutazone (OPB), which has been determined at 1.6 A resolution. The structure has been refined to an R factor of 0.209. The structure contains 1 molecule each of PLA(2) and OPB with 2 sulfate ions and 111 water molecules. The binding studies using surface plasmon resonance show that OPB binds to PLA(2) with a dissociation constant of 6.4 x 10(-8) M. The structure determination has revealed the presence of an OPB molecule at the binding site of PLA(2). It fits well in the binding region, thus displaying a high level of complementarity. The structure also indicates that OPB works as a competitive inhibitor. A large number of hydrophobic interactions between the enzyme and the OPB molecule have been observed. The hydrophobic interactions involving residues Tyr(52) and Lys(69) with OPB are particularly noteworthy. Other residues of the hydrophobic channel such as Leu(3), Phe(5), Met(8), Ile(9), and Ala(18) are also interacting extensively with the inhibitor. The crystal structure clearly reveals that the binding of OPB to PLA(2) is specific in nature and possibly suggests that the basis of its anti-inflammatory effects may be due to its binding to PLA(2) as well.  相似文献   

2.
Stahelin RV  Cho W 《Biochemistry》2001,40(15):4672-4678
The roles of cationic, aliphatic, and aromatic residues in the membrane association and dissociation of five phospholipases A(2) (PLA(2)), including Asp-49 PLA(2) from the venom of Agkistrodon piscivorus piscivorus, acidic PLA(2) from the venom of Naja naja atra, human group IIa and V PLA(2)s, and the C2 domain of cytosolic PLA(2), were determined by surface plasmon resonance analysis. Cationic interfacial binding residues of A. p. piscivorus PLA(2) (Lys-10) and human group IIa PLA(2) (Arg-7, Lys-10, and Lys-16), which mediate electrostatic interactions with anionic membranes, primarily accelerate the membrane association. In contrast, an aliphatic side chain of the C2 domain of cytosolic PLA(2) (Val-97), which penetrates into the hydrophobic core of the membrane and forms hydrophobic interactions, mainly slows the dissociation of membrane-bound protein. Aromatic residues of human group V PLA(2) (Trp-31) and N. n. atra PLA(2) (Trp-61, Phe-64, and Tyr-110) contribute to both membrane association and dissociation steps, and the relative contribution to these processes depends on the chemical nature and the orientation of the side chains as well as their location on the interfacial binding surface. On the basis of these results, a general model is proposed for the interfacial binding of peripheral proteins, in which electrostatic interactions by ionic and aromatic residues initially bring the protein to the membrane surface and the subsequent membrane penetration and hydrophobic interactions by aliphatic and aromatic residues stabilize the membrane-protein complexes, thereby elongating the membrane residence time of protein.  相似文献   

3.
Phospholipase A(2) (PLA(2)) (E. C. 3.1.1.4) is a common enzyme in the two-way cascade mechanism leading to the production of proinflammatory compounds known as eicosanoids. The binding of phospholipase A(2) to the membrane surface and hydrolysis of phospholipids are thought to involve the formation of a hydrophobic channel into which a single substrate molecule diffuses before its cleavage. To regulate the production of proinflammatory compounds, a specific peptide inhibitor Val-Ala-Phe-Arg-Ser (VAFRS) for the group I PLA(2) enzymes has been designed and synthesized. PLA(2) was isolated from Indian cobra (Naja naja sagittifera) venom and purified to homogeneity. The binding studies indicated the K(i) value of 1.02 +/- 0.10 x 10(-8) M. The purified PLA(2) samples and the designed inhibitor VAFRS were cocrystallized. The crystal structure of the complex was determined and refined to 1.9 A resolution. The peptide binds to PLA(2) at the active site and fills the hydrophobic channel completely. However, its placement with respect to the channel is in the opposite direction as compared to those observed in group II PLA(2)'s. Furthermore, the predominant intermolecular interactions involve strong electrostatic interactions between the side chains of peptide Arg and Asp 49 of PLA(2) together with a number of van der Waals interactions with other residues. A good number of observed interactions between the peptide and the protein indicate the significance of a structure-based drug design approach. The novel factor in the present sequence of the peptide is related to the introduction of a positively charged residue at the C-terminal part of the peptide.  相似文献   

4.
Structural basis for bile salt inhibition of pancreatic phospholipase A2   总被引:1,自引:0,他引:1  
Bile salt interactions with phospholipid monolayers of fat emulsions are known to regulate the actions of gastrointestinal lipolytic enzymes in order to control the uptake of dietary fat. Specifically, on the lipid/aqueous interface of fat emulsions, the anionic portions of amphipathic bile salts have been thought to interact with and activate the enzyme group-IB phospholipase A2 (PLA2) derived from the pancreas. To explore this regulatory process, we have determined the crystal structures of the complexes of pancreatic PLA2 with the naturally occurring bile salts: cholate, glycocholate, taurocholate, glycochenodeoxycholate, and taurochenodeoxycholate. The five PLA2-bile salt complexes each result in a partly occluded active site, and the resulting ligand binding displays specific hydrogen bonding interactions and extensive hydrophobic packing. The amphipathic bile salts are bound to PLA2 with their polar hydroxyl and sulfate/carboxy groups oriented away from the enzyme's hydrophobic core. The impaired catalytic and interface binding functions implied by these structures provide a basis for the previous numerous observations of a biphasic dependence of the rate of PLA2 catalyzed hydrolysis of zwitterionic glycerophospholipids in the presence of bile salts. The rising or activation phase is consistent with enhanced binding and activation of the bound PLA2 by the bile salt induced anionic charge in a zwitterionic interface. The falling or inhibitory phase can be explained by the formation of a catalytically inert stoichiometric complex between PLA2 and any bile salts in which it forms a stable complex. The model provides new insight into the regulatory role that specific PLA2-bile salt interactions are likely to play in fat metabolism.  相似文献   

5.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

6.
Phospholipase A2 (PLA2) is a ubiquitous enzyme that specifically catalyzes hydrolysis of membrane phospholipids to produce lysophospholipids and free fatty acid, namely arachidonic acid, which provides substrate for eicosanoids biosynthesis. Thus, the compounds inhibiting PLA2 have been implicated as potential therapeutic agents in treatment of inflammation related diseases. Plant and marine organisms serve as sources of compounds that act as potential therapeutic agents for treatment of various diseases. The present study reveals the relationship between the structure and function of the medicinally important herbal compounds (acalyphin, chlorogenic acid, stigmasterol, curcumin and tectoridin) and marine compounds (gracilin A and aplysulphurin A). To understand the binding mechanisms of these compounds, molecular modeling studies has been performed with Russell's viper and bovine pancreatic PLA2 as target molecules using molecular operating environment (MOE) software. These compounds show favorable interactions with the amino acid residues at the active site of Russell's viper and bovine pancreatic PLA2, thereby substantiating their proven efficacy as anti-inflammatory compounds and antidotes.  相似文献   

7.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

8.
Berg OG  Yu BZ  Chang C  Koehler KA  Jain MK 《Biochemistry》2004,43(25):7999-8013
Equilibrium parameters for the binding of monodisperse alkyl sulfate along the i-face (the interface binding surface) of pig pancreatic IB phospholipase A(2) (PLA2) to form the premicellar complexes (E(i)(#)) are characterized to discern the short-range specific interactions. Typically, E(i)(#) complexes are reversible on dilution. The triphasic binding isotherm, monitored as the fluorescence emission from the single tryptophan of PLA2, is interpreted as a cooperative equilibrium for the sequential formation of three premicellar complexes (E(i)(#), i = 1, 2, 3). In the presence of calcium, the dissociation constant K(1) for the E(1)(#) complex of PLA2 with decyl sulfate (CMC = 4500 microM) is 70 microM with a Hill coefficient n(1) = 2.1 +/- 0.2; K(2) for E(2)(#) is 750 microM with n(2) = 8 +/- 1, and K(3) for E(3)(#) is 4000 microM with an n(3) value of about 12. Controls show that (a) self-aggregation of decyl sulfate alone is not significant below the CMC; (b) occupancy of the active site is not necessary for the formation of E(i)(#); (c) K(i) and n(i) do not change significantly due to the absence of calcium, possibly because alkyl sulfate does not bind to the active site of PLA2; (d) the E(i)(#) complexes show a significant propensity for aggregation; and (e) PLA2 is not denatured in E(i)(#). The results are interpreted to elaborate the model for atomic level interactions along the i-face: The chain length dependence of the fit parameters suggests that short-range specific anion binding of the headgroup is accompanied by desolvation of the i-face of E(i)(#). We suggest that allosteric activation of PLA2 results from such specific interactions of the amphiplies and the desolvation of the i-face. The significance of these primary interfacial binding events and the coexistence of the E and E(i)(#) aggregates is discussed.  相似文献   

9.
Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of β-aminoxypropionic acids (compounds 5–21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR∶inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp2-hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22–32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding.  相似文献   

10.
Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.  相似文献   

11.
Starting from the 2.8-A resolution x-ray structure of bovine rhodopsin, three-dimensional molecular models of the complexes between arginine vasopressin and two receptor subtypes (V1a, V1b) have been built. Amino acid sequence alignment and docking studies suggest that four key residues (1.35, 2.65, 4.61, and 5.35) fine tune the binding of vasopressin and related peptide agonists to both receptor subtypes. To validate these predictions, a series of single or double mutants were engineered at V1a and V1b receptor subtypes and tested for their binding and functional properties. Two negatively charged amino acids at positions 1.35 and 2.65 are key anchoring residues to the Arg8 residue of arginine vasopressin. Moreover, two amino acids (V(4.61) and P(5.35)) delineating a hydrophobic subsite at the human V1b receptor are responsible for the recognition of V1b selective peptide agonists. Last, one of the latter positions (5.35) is hypothesized to explain the pharmacological species differences between rat and human vasopressin receptors for a V1b peptide agonist. Altogether these refined three-dimensional models of V1a and V1b human receptors should enable the identification of further new selective V1a and V1b agonists as pharmacological but also therapeutic tools.  相似文献   

12.
Bai S  Jain MK  Berg OG 《Biochemistry》2008,47(9):2899-2907
Pig pancreatic IB phospholipase A 2 (PLA2) forms three distinguishable premicellar E i (#) ( i = 1, 2, and 3) complexes at successively higher decylsulfate concentrations. The Hill coefficient for E 1 (#) is n 1 = 1.6, and n 2 and n 3 for E 2 (#) and E 3 (#) are about 8 each. Saturation-transfer difference nuclear magnetic resonance (NMR) and other complementary results with PLA2 show that decylsulfate molecules in E 2 (#) and E 3 (#) are contiguously and cooperatively clustered on the interface-binding surface or i-face that makes contact with the substrate interface. In these complexes, the saturation-transfer difference NMR signatures of (1)H in decylsulfate are different. The decylsulfate epitope for the successive E i (#) complexes increasingly resembles the micellar complex formed by the binding of PLA2 to preformed micelles. Contiguous cooperative amphiphile binding is predominantly driven by the hydrophobic effect with a modest electrostatic shielding of the sulfate head group in contact with PLA2. The formation of the complexes is also associated with structural change in the enzyme. Calcium affinity of E 2 (#) appears to be modestly lower than that of the free enzyme and E 1 (#). Binding of decylsulfate to the i-face does not require the catalytic calcium required for the substrate binding to the active site and for the chemical step. These results show that E i (#) complexes are useful to structurally characterize the cooperative sequential and contiguous binding of amphiphiles on the i-face. We suggest that the allosteric changes associated with the formation of discrete E i (#) complexes are surrogates for the catalytic and allosteric states of the interface activated PLA2.  相似文献   

13.
Novel compounds with significant medicinal properties have gained much interest in therapeutic approaches for treating various inflammatory disorders like arthritis, odema and snake bites and the post-envenom (impregnating with venom) consequences. Inflammation is caused by the increased concentration of secretory Phospholipases A(2) (sPLA(2)s) at the site of envenom. A novel compound Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was isolated from the leaves of Vitex negundo and the crystal structure was reported recently. The acute anti-inflammatory activity of TDTBPP was assessed by Carrageenan-induced rat paw odema method. TDTBPP reduced the raw paw odema volume significantly at the tested doses of 50 mg/kg and 70 mg/kg body weight. Molecular docking studies were carried out with the X-ray crystal structures of Daboia russelli pulchella's (Vipera russelli, Indian Russell's viper) venom sPLA(2) and Human non-pancreatic secretory PLA(2) (Hnps PLA(2)) as targets to illustrate the antiinflammatory and antidote activities of TDTBPP. Docking results showed hydrogen bond (H-bond) interaction with Lys69 residue lying in the anti-coagulant loop of D. russelli's venom PLA(2), which is essential in the catalytic activity of the enzyme and hydrophobic interactions with the residues at the binding site (His48, Asp49). Docking of TDTBPP with Hnps PLA(2) structure showed coordination with calcium ion directly as well as through the catalytically important water molecule (HOH1260) located at the binding site.  相似文献   

14.
We have studied the interactions between calmodulin (CaM) and three target peptides from the death-associated protein kinase (DAPK) protein family using both experimental and modeling methods, aimed at determining the details of the underlying biological regulation mechanisms. Experimentally, calorimetric binding free energies were determined for the complexes of CaM with peptides representing the DAPK2 wild-type and S308D mutant, as well as DAPK1. The observed affinity of CaM was very similar for all three studied peptides. The DAPK2 and DAPK1 peptides differ significantly in sequence and total charge, while the DAPK2 S308D mutant is designed to model the effects of DAPK2 Ser308 phosphorylation. The crystal structure of the CaM-DAPK2 S308D mutant peptide is also reported. The structures of CaM-DAPK peptide complexes present a mode of CaM-kinase interaction, in which bulky hydrophobic residues at positions 10 and 14 are both bound to the same hydrophobic cleft. To explain the microscopic effects underlying these interactions, we performed free energy calculations based on the approximate MM-PBSA approach. For these highly charged systems, standard MM-PBSA calculations did not yield satisfactory results. We proposed a rational modification of the approach which led to reasonable predictions of binding free energies. All three complexes are strongly stabilized by two effects: electrostatic interactions and buried surface area. The strong favorable interactions are to a large part compensated by unfavorable entropic terms, in which vibrational entropy is the largest contributor. The electrostatic component of the binding free energy followed the trend of the overall peptide charge, with strongest interactions for DAPK1 and weakest for the DAPK2 mutant. The electrostatics was dominated by interactions of the positively charged residues of the peptide with the negatively charged residues of CaM. The nonpolar binding free energy was comparable for all three peptides, the largest contribution coming from the Trp305. About two-thirds of the buried surface area corresponds to nonpolar residues, showing that hydrophobic interactions play an important role in these CaM-peptide complexes. The simulation results agree with the experimental data in predicting a small effect of the S308D mutation on CaM interactions with DAPK2, suggesting that this mutation is not a good model for the S308 phosphorylation.  相似文献   

15.
The potential storage and delivery function of cartilage oligomeric matrix protein (COMP) for cell signaling molecules was explored by binding hydrophobic compounds to the recombinant five-stranded coiled-coil domain of COMP. Complex formation with benzene, cyclohexane, vitamin D3 and elaidic acid was demonstrated through increases in denaturation temperatures of 2-10 degreesC. For all-trans retinol and all-trans retinoic acid, an equilibrium dissociation constant KD = 0.6 microM was evaluated by fluorescence titration. Binding of benzene and all-trans retinol into the hydrophobic axial pore of the COMP coiled-coil domain was proven by the X-ray crystal structures of the corresponding complexes at 0.25 and 0.27 nm resolution, respectively. Benzene binds with its plane perpendicular to the pore axis. The binding site is between the two internal rings formed by Leu37 and Thr40 pointing into the pore of the COMP coiled-coil domain. The retinol beta-ionone ring is positioned in a hydrophobic environment near Thr40, and the 1.1 nm long isoprene tail follows a completely hydrophobic region of the pore. Its terminal hydroxyl group complexes with a ring of the five side chains of Gln54. A mutant in which Gln54 is replaced by Ile binds all-trans retinol with affinity similar to the wild-type, demonstrating that hydrophobic interactions are predominant.  相似文献   

16.
B I Lee  R Dua  W Cho 《Biochemistry》1999,38(24):7811-7818
The catalytic steps of the phospholipase A2 (PLA2)-catalyzed hydrolysis of phospholipids are preceded by interfacial binding. Among various pancreatic PLA2s, bovine pancreatic PLA2 (bpPLA2) has a unique interfacial binding mode in which Lys-56 plays an important role in its binding to anionic lipid surfaces. To identify the structural determinant of this unique interfacial binding mode of bpPLA2, we systematically mutated bpPLA2 and measured the effects of mutations on its interfacial binding and activity. First, different cationic clusters were generated in the amino-terminal alpha-helix by the N6R, G7K, and N6R/G7K mutations. These mutations enhanced the binding of bpPLA2 to anionic liposomes up to 15-fold. For these mutants, however, the K56E mutation still caused a large drop in interfacial affinity for and activity toward anionic liposomes, indicating that the generation of a cationic patch in the amino-terminal alpha-helix of bpPLA2 did not change its interfacial binding mode. Second, residues 62-66 that form a part of the pancreatic loop were deleted. For this deletion mutant (Delta62-66), which was as active as wild-type toward anionic liposomes, the K56E and K116E mutations (Delta62-66/K56E and Delta62-66/K116E) did not have significant effects on interfacial affinity. In contrast, the K10E mutation showed a much larger decrease in interfacial affinity (10-fold), indicating the deletion of residues 62-66 caused a major change in the interfacial binding mode. Finally, hydrophobic residues in positions 63 and 65 were replaced by bulkier ones (V63F and V63F/V65L) to pinpoint the structural determinant of the interfacial binding mode of bpPLA2. The effects of K10E and K56E mutations on the interfacial affinity and activity of these mutants showed that Val-63 and Val-65 of bpPLA2 are the structural determinant of its unique interfacial binding mode and that relatively conservative substitutions at these positions result in large changes in the interfacial binding mode among mammalian pancreatic PLA2s. Taken together, this study reveals how minor structural differences among homologous PLA2s can lead to distinct interfacial binding behaviors.  相似文献   

17.
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARγ, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARγ structure, which corroborates the hypothesis that these molecules are potential ligands of PPARγ. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARγ, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.  相似文献   

18.
The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C(18)H(36)O(2)) has been determined at a resolution of 1.8 A. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in group I/II PLA(2)s, and to the possible interactions of Lys49-PLA(2)s with target membranes.  相似文献   

19.
The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein‐ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug‐like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co‐occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号