首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Iron and oxygen are essential but potentially toxic constituents of most organisms, and their transport is meticulously regulated both at the cellular and systemic levels. Compartmentalization may be a homeostatic mechanism for isolating these biological reactants in cells. To investigate this hypothesis, we have undertaken a genetic analysis of the interaction between iron and oxygen metabolism in Drosophila. We show that Drosophila iron regulatory protein-1 (IRP1) registers cytosolic iron and oxidative stress through its labile iron sulfur cluster by switching between cytosolic aconitase and RNA-binding functions. IRP1 is strongly activated by silencing and genetic mutation of the cytosolic superoxide dismutase (Sod1), but is unaffected by silencing of mitochondrial Sod2. Conversely, mitochondrial aconitase activity is relatively insensitive to loss of Sod1 function, but drops dramatically if Sod2 activity is impaired. This strongly suggests that the mitochondrial boundary limits the range of superoxide reactivity in vivo. We also find that exposure of adults to paraquat converts cytosolic aconitase to IRP1 but has no affect on mitochondrial aconitase, indicating that paraquat generates superoxide in the cytosol but not in mitochondria. Accordingly, we find that transgene-mediated overexpression of Sod2 neither enhances paraquat resistance in Sod1+ flies nor compensates for lack of SOD1 activity in Sod1-null mutants. We conclude that in vivo, superoxide is confined to the subcellular compartment in which it is formed, and that the mitochondrial and cytosolic SODs provide independent protection to compartment-specific protein iron-sulfur clusters against attack by superoxide generated under oxidative stress within those compartments.  相似文献   

2.
The enzymatic antioxidant defences of mammalian cells include copper-zinc superoxide dismutase (SOD)(Cu Zn-SOD; EC 1.15.1.1) which catalyses the dismutation of superoxide anions (O2.-) to hydrogen peroxide(H2, O2)and a seleno-dependent glutathione peroxidase (GSH-px) (GSH-px; EC 1.11.1.9) which catalyses the degradation of H2O2 to H2O and O2. The measurement of these enzyme activities is often used as a possible biological index of oxidative stress in various clinical conditions. Complete understanding of such information requires knowledge of the random biological fluctuation of the enzyme activity which occurs in each individual. In the present investigation we examined this normal variability in 12 healthy volunteers (four women and eight men) aged 23–45 years, over 6 months. The intra-individual coefficients of variation (estimated using analysis of variance techniques) were 15% (SOD) and 13% (GSH-px). The analytical goal for imprecision was achieved for both enzymes, i.e. it was less than one half of the measured intra-individual variation. Both enzymes showed marked individuality, indicating that an individual's reference values are more useful than population-based data. The critical difference required for significant changes in serial results is 45% for SOD and 40% for GSH-px.  相似文献   

3.
Membrane (Na+K)ATPase isolated from rat brain was preincubated in a medium in which superoxide radicals were generated enzymatically. Exposure to superoxide radicals caused an irreversible inactivation, which could be prevented by further addition of superoxide dismutase. (Na+K)ATPase was also protected by addition of allopurinol, a xanthine oxidase inhibitor, during preincubation. The K-activated nitrophenylphosphatase associated with (Na+K)ATPase was also found to be inactivated by preincubation with superoxide radicals, which could be prevented by superoxide dismutase.  相似文献   

4.
Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro.  相似文献   

5.
Extracellular superoxide dismutase   总被引:1,自引:0,他引:1  
The extracellular space is protected from oxidant stress by the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), which is highly expressed in selected tissues including blood vessels, heart, lungs, kidney and placenta. EC-SOD contains a unique heparin-binding domain at its carboxy-terminus that establishes localization to the extracellular matrix where the enzyme scavenges superoxide anion. The EC-SOD heparin-binding domain can be removed by proteolytic cleavage, releasing active enzyme into the extracellular fluid. In addition to protecting against extracellular oxidative damage, EC-SOD, by scavenging superoxide, preserves nitric oxide bioactivity and facilitates hypoxia-induced gene expression. Loss of EC-SOD activity contributes to the pathogenesis of a number of diseases involving tissues with high levels of constitutive extracellular superoxide dismutase expression. A thorough understanding of the biological role of EC-SOD will be invaluable for developing novel therapies to prevent stress by extracellular oxidants.  相似文献   

6.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

7.
Summary A cuprozinc superoxide dismutase has been isolated from pig liver. The enzyme is similar to previously described cuprozinc superoxide dismutases in that it is a dimer of about 32 000 molecular weight consisting of approximately two equally sized subunits, and 2 atoms of copper and two atoms of zinc per molecule. It differs, however, from previously described cuprozinc superoxide dismutases because of its higher isoelectric point; pI 6.8 vs 4.9 for bovine enzyme. The diffusion coefficient for the porcine enzyme was determined to be 7.53×10−7 cm2s−1, while the equivalent spherical hydrodynamic radius was computed as 28.5 ?. The enzyme was observed to undergo self-association with time. Sulfhydryl interaction is postulated to be involved.  相似文献   

8.
A. Puppo  L. Dimitrijevic  J. Rigaud 《Planta》1982,156(4):374-379
Superoxide anion is able to oxidize oxyleghemoglobin prepared from soybean nodules. Furthermore, ferrileghemoglobin is oxidized to leghemoglobin (IV) by hydrogen peroxide and this irreversible reaction leads to a complete inactivation of the hemoprotein. In scavenging O 2 - and H2O2, superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are able to limit these oxidations. The occurrence of these enzymes within soybean nodules and their main characteristics are reported here. A general scheme taking into account their roles in leghemoglobin protection in vivo is proposed.Abbreviations Lb leghemoglobin - SOD superoxide dismutase  相似文献   

9.
10.
Superoxide dismutases (SODs) are enzymes that protect organisms against superoxides and reactive oxygen species (ROS) produced during their active metabolism. ROS are major mediators of phagocytes microbicidal activity. Here we show that the cytoplasmic Listeria monocytogenes MnSOD is phosphorylated on serine and threonine residues and less active when bacteria reach the stationary phase. We also provide evidence that the most active nonphosphorylated form of MnSOD can be secreted via the SecA2 pathway in culture supernatants and in infected cells, where it becomes phosphorylated. A Deltasod deletion mutant is impaired in survival within macrophages and is dramatically attenuated in mice. Together, our results demonstrate that the capacity to counteract ROS is an essential component of L. monocytogenes virulence. This is the first example of a bacterial SOD post-translationally controlled by phosphorylation, suggesting a possible new host innate mechanism to counteract a virulence factor.  相似文献   

11.
The production of superoxide dismutase (SOD) varied in Deinococcus radiophilus, the UV resistant bacterium, depending upon different phases of growth, UV irradiation, and superoxide treatment. A gradual increase in total SOD activity occurred up to the stationary phases. The electrophoretic resolution of the SOD in cell extracts of D. radiophilus at each growth phase revealed the occurrence of MnSOD throughout the growth phases. The SOD profiles of D. radiophilus at the exponential phase received oxidative stress by the potassium superoxide treatment or UV irradiation also revealed the occurrence of a single SOD. However, these treatments caused an increase in SOD activity. The data strongly suggest that D. radiophilus has only one species of SOD as a constitutive enzyme, which seems to be a membrane-associated protein.  相似文献   

12.
Reduction of paraquat toxicity by superoxide dismutase   总被引:5,自引:0,他引:5  
A P Autor 《Life sciences》1974,14(7):1309-1319
The effect of intravenously administered superoxide dismutase on paraquat-treated rats kept either in air or an atmosphere of 90%–95% oxygen was investigated. Of those rats maintained in the oxygen-enriched atmosphere, 50% died within 30 hours whereas, 50 hours elapsed before 50% mortality was observed for the superoxide dismutase-treated rats. Those animals allowed to remain in air were more responsive to superoxide dismutase treatment. Of those animals for which paraquat was fatal, untreated rats showed 50% cumulative mortality within 35 hours after paraquat administration, whereas those rats treated with superoxide dismutase showed 50% mortality after 80 hours. Sections of lung tissue examined at low magnification indicated that the extensive alveolar and vascular damage caused by paraquat was ameliorated with the administration of superoxide dismutase. These findings may have particular relevance in the treatment of paraquat intoxication in humans.  相似文献   

13.
Superoxide radicals are known to be important mediators in chronic inflammatory and fibrotic processes, in which accumulation of fibroblasts is thought to play a major role in the pathogenetic events. The enzyme superoxide dismutase removes these radicals by a catalytic reaction. Chemotactic response of human fibroblasts and fibrosarcoma-derived cells (HT-1080) to fibroblast conditioned medium, fibronectin and platelet-derived growth factor was inhibited in a dose-dependent manner in the presence of superoxide dismutase, while random migration, cell proliferation, cell viability and synthesis of collagen and non-collagenous proteins was not altered. In contrast, phorbol myristate acetate, an inducer of superoxide generation, stimulated the chemotactic movement of fibroblasts to the attractants. Evidence for the formation of superoxide is provided by the reduction of tetrazolium salt by activated fibroblasts which could be inhibited by superoxide dismutase. Thus, it is concluded that superoxide in small amounts is involved in the mechanism of fibroblast chemotaxis. Superoxide dismutase may, therefore, reduce fibroblast migration into sites of injury or inflammation.  相似文献   

14.
Refolding of superoxide dismutase by ion-exchange chromatography   总被引:5,自引:0,他引:5  
A new ion-exchange chromatography process was developed for refolding of iron superoxide dismutase (Fe-SOD) produced in Escherichia coli as an inclusion body. After adsorption on an ion-exchange matrix, the denatured protein was eluted by gradient decrease of urea concentration and pH of the elution buffer. The dual gradient allowed the denatured protein to refold to its correct native conformation with return of biological activity. Compared with the traditional dilution, refolding process, the new process increased the refolding yield five-fold. The process could also be carried out at high protein concentration to decrease the solution volume after refolding.  相似文献   

15.
Cu,Zn SOD is known to be inactivated by HO2 and to be protected against that inactivation by a number of small molecules including formate, imidazole, and urate. This inactivation has been shown to be due to oxidation of a ligand field histidine residue by a bound oxidant formed by reaction of the active site Cu(II) with HO2. We now report that protective actions of both formate and NADH increase as the pH was raised in the range 8.0–9.5. This is taken to indicate increased accessibility of the Cu site with rising pH and/or increased reactivity of the bound oxidant toward exogeneous substrates at high pH. Formate appears to act as a sacrificial substrate that protects by competing with the endogenous histidine residue for reaction with the bound oxidant, or that repairs the damage by reducing the histidyl radical intermediate. The same is likely also true of NADH.  相似文献   

16.
Cu,Zn SOD is known to be inactivated by HO2 and to be protected against that inactivation by a number of small molecules including formate, imidazole, and urate. This inactivation has been shown to be due to oxidation of a ligand field histidine residue by a bound oxidant formed by reaction of the active site Cu(II) with HO2. We now report that protective actions of both formate and NADH increase as the pH was raised in the range 8.0–9.5. This is taken to indicate increased accessibility of the Cu site with rising pH and/or increased reactivity of the bound oxidant toward exogeneous substrates at high pH. Formate appears to act as a sacrificial substrate that protects by competing with the endogenous histidine residue for reaction with the bound oxidant, or that repairs the damage by reducing the histidyl radical intermediate. The same is likely also true of NADH.  相似文献   

17.
Whittaker MM  Whittaker JW 《Biochemistry》2008,47(44):11625-11636
Metal uptake by apomanganese superoxide dismutase in vitro is a complex process exhibiting multiphase "gated" reaction kinetics and a striking sigmoidal temperature profile that has led to a model of conformationally gated metal binding, requiring conversion between "closed" and "open" forms. This work systematically explores the structural determinants of metal binding in both wild-type (WT) apoprotein and mutational variants as a test of mechanistic models. The pH dependence of metalation under physiological conditions (37 degrees C) shows it is linked to ionization of a single proton with a p K a of 7.7. Size exclusion chromatography demonstrates that the apoprotein is dimeric even when it is fully converted to the open form. The role of molecular motions in metal binding has been probed by using disulfide engineering to introduce covalent constraints into the protein. While restricting motion at domain interfaces has no effect, constraining the subunit interface significantly perturbs metal uptake but does not prevent the process. Mutagenesis of residues in the active site environment results in a dramatic shift in the transition temperature by as much as 20 degrees C or a loss of pH sensitivity. On the basis of these results, a mechanism for metal uptake by manganese superoxide dismutase involving reorientation of active site residues to form a metal entry channel is proposed.  相似文献   

18.
Regulation of superoxide dismutase expression by copper availability   总被引:3,自引:0,他引:3  
The most abundant copper proteins in green tissues are plastocyanin (PC) in thylakoids and copper/zinc superoxide dismutase (Cu/ZnSOD) of which the major isoforms are found in the cytosol and in the chloroplast stroma. An iron superoxide dismutase (FeSOD) can also be found in the stroma. The expression of superoxide dismutases (SODs) has been studied mainly in the context of abiotic stress. However, the availability of metal cofactors may also determine SOD expression patterns. Indeed, in Arabidopsis thaliana , Cu/ZnSOD enzymes were only expressed when copper was sufficient. This observation was made for plants grown on sucrose-containing tissue culture media and regulation of SOD expression by copper has not been tested for other species. To investigate the effect of copper on SOD expression, we used a hydroponic set-up in which plants grew without any evident stress symptoms. We observed that A. thaliana , Brassica juncea , Lycopersicum lycopersicum , Zea mays and Oryza sativa , downregulated Cu/ZnSOD in response to copper limitation. Under this condition, FeSOD expression was upregulated to replace Cu/ZnSOD in the stroma in all plants except Z. mays , in which FeSOD was not detectable. Copper limitation did not affect PC accumulation in any of the plants except Z. mays . Comparisons of leaf copper contents and SOD expression suggest that Cu/ZnSOD and FeSOD expression levels are good indicators of impending copper deficiency. Plants that downregulate Cu/ZnSOD and upregulate FeSOD under copper limitation can maintain superoxide scavenging and save copper for use in PC, which is essential for photosynthesis.  相似文献   

19.
We have investigated the endocytosis by rat liver of superoxide dismutase (SOD) labelled with 125I. (125I) SOD is quickly taken up by the liver where it remains in significant amounts for at least 150 min. Adsorptive endocytosis is probably involved. Distribution of radioactivity was established after differential and isopycnic centrifugation and compared with that of cathepsin C, a lysosomal enzyme. Results show that the behavior of radioactivity is similar to that of the hydrolase. SOD activity is only marginally affected by incubation in the presence of a purified lysosome extract; moreover, when (125I) SOD is treated in the same conditions, only a few percent of radioactivity becomes acidosoluble. These observations indicate that SOD taken up by the liver accumulates in lysosomes where it can stay for a relatively long time owing to its relative resistance to lysosomal hydrolases.  相似文献   

20.
Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase.   总被引:69,自引:0,他引:69  
Peroxynitrite (ONOO-), the reaction product of superoxide (O2-) and nitric oxide (NO), may be a major cytotoxic agent produced during inflammation, sepsis, and ischemia/reperfusion. Bovine Cu,Zn superoxide dismutase reacted with peroxynitrite to form a stable yellow protein-bound adduct identified as nitrotyrosine. The uv-visible spectrum of the peroxynitrite-modified superoxide dismutase was highly pH dependent, exhibiting a peak at 438 nm at alkaline pH that shifts to 356 nm at acidic pH. An equivalent uv-visible spectrum was obtained by Cu,Zn superoxide dismutase treated with tetranitromethane. The Raman spectrum of authentic nitrotyrosine was contained in the spectrum of peroxynitrite-modified Cu,Zn superoxide dismutase. The reaction was specific for peroxynitrite because no significant amounts of nitrotyrosine were formed with nitric oxide (NO), nitrogen dioxide (NO2), nitrite (NO2-), or nitrate (NO3-). Removal of the copper from the Cu,Zn superoxide dismutase prevented formation of nitrotyrosine by peroxynitrite. The mechanism appears to involve peroxynitrite initially reacting with the active site copper to form an intermediate with the reactivity of nitronium ion (NO2+), which then nitrates tyrosine on a second molecule of superoxide dismutase. In the absence of exogenous phenolics, the rate of nitration of tyrosine followed second-order kinetics with respect to Cu,Zn superoxide dismutase concentration, proceeding at a rate of 1.0 +/- 0.1 M-1.s-1. Peroxynitrite-mediated nitration of tyrosine was also observed with the Mn and Fe superoxide dismutases as well as other copper-containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号