首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

2.
We investigated the effect of Cl- on the Ca2+ permeability of rabbit skeletal muscle junctional sarcoplasmic reticulum (SR) using 45Ca2+ fluxes and single channel recordings. In 45Ca2+ efflux experiments, the lumen of the SR was passively loaded with solutions of 150 mM univalent salt containing 5 mM 45Ca2+. Release of 45Ca2+ was measured by rapid filtration in the presence of extravesicular 0.4-0.8 microM free Ca2+ and 150 mM of the same univalent salt loaded into the SR lumen. The rate of release was 5-10 times higher when the univalent salt equilibrated across the SR-contained Cl- (Tris-Cl, choline-Cl, KCl) instead of an organic anion or other halides (gluconate-, methanesulfonate-, acetate-, HEPES-, Br-, I-). Cations (K+, Tris+) could be interchanged without a significant effect on the release rate. To determine whether Cl- stimulated ryanodine receptors, we measured the stimulation of release by ATP (5 mM total) and caffeine (20 mM total) and the inhibition by Mg2+ (0.8 mM estimated free) in Cl(-)-free and Cl(-)-containing solutions. The effects of ATP, caffeine, and Mg2+ were the largest in K-gluconate and Tris-gluconate, intermediate in KCl, and notably poor or absent in choline-Cl and Tris-Cl. Procaine (10 mM) inhibited the caffeine-stimulated release measured in K-gluconate, whereas the Cl- channel blocker clofibric acid (10 mM) but not procaine inhibited the caffeine-insensitive release measured in choline-Cl. Ruthenium red (20 microM) inhibited release in all solutions. In SR fused to planar bilayers we identified a nonselective Cl- channel (PCl: PTris: PCa = 1:0.5:0.3) blocked by ruthenium red and clofibric acid but not by procaine. These conductive and pharmacological properties suggested the channel was likely to mediate Cl(-)-dependent SR Ca2+ release. The absence of a contribution of ryanodine receptors to the Cl(-)-dependent release were indicated by the lack of an effect of Cl- on the open probability of this channel, a complete block by procaine, and a stimulation rather than inhibition by clofibric acid. A plug model of Cl(-)-dependent release, whereby Cl- removed the inhibition of the nonselective channel by large anions, was formulated under the assumption that nonselective channels and ryanodine receptor channels operated separately from each other in the terminal cisternae. The remarkably large contribution of Cl- to the SR Ca2+ permeability suggested that nonselective Cl- channels may control the Ca2+ permeability of the SR in the resting muscle cell.  相似文献   

3.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

4.
Two types of divalent cation conducting channels from rabbit skeletal muscle sarcoplasmic reticulum (SR) were incorporated into planar lipid bilayers. A high conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy density SR fractions. The 100-pS channel was activated by adenine nucleotides and Ca2+ and inhibited by Mg2+ and ruthenium red. A 10-pS calcium and barium conducting channel could be incorporated into planar lipid bilayers from light, intermediate, and heavy density SR vesicles. 10-pS channel activity in bilayers was not dependent on cis Ca2+ and was only weakly dependent on adenine nucleotides. Ruthenium red at concentrations up to 1 mM had no effect and Mg2+ was only marginally effective in inhibiting macroscopic Ba2+ currents from this channel. Calcium releasing activity in intermediate and heavy density SR fractions was assayed according to a rapid quench protocol and compared with the results obtained in the bilayer. Results from this comparison indicate that the 10-pS channel is probably not involved in rapid Ca2+- and adenine nucleotide-induced Ca2+ release from isolated SR vesicles.  相似文献   

5.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

6.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

7.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

8.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

9.
The sulfhydryl-gated 106-kDa Ca(2+)-release channel (SG-106) was purified by biotin-avidin chromatography from skeletal sarcoplasmic reticulum (SR) vesicles and used as an antigen to raise polyclonal antibodies. Western blots showed that the antisera crossreacted with the antigenic SG-106 and not with SR Ca2+, Mg(2+)-ATPase or with junctional foot proteins (JFPs) (Zaidi et al., 1989, J. Biol. Chem. 264(36), 21, 725-21, 736; 21, 737-21, 747). Polyclonal antibody-affinity columns were used to selectively purify SG-106-kDa proteins which, upon incorporation in planar bilayers, revealed the presence of a cationic channels with properties similar to "native" Ca(2+)-release channels obtained through the fusion of SR vesicles with planar bilayers. In agreement with measurements of Ca2+ release from SR vesicles, sulfhydryl oxidizing and reducing agents (i.e., 2,2'-dithiodipyridine and dithiothreitol) respectively increased and decreased the open-time probability of 106-kDa Ca(2+)-release channels. In contrast with reports on JFPs, ryanodine at 0.5-1 nM increased the open-time probability and at 2-10 nM locked 106-kDa Ca(2+)-release channels in a closed state rather than an open subconductance state. The SG-106 was activated by millimolar ATP, inhibited by millimolar Mg2+, and blocked by micromolar ruthenium red. Adriamycin (2-10 microM) caused a transient activation of SG-106 Ca(2+)-release channels, followed by closure in about 5 min, and intermittent activation to a subconductance state. Polyclonal antibodies used to purify the SG-106 also activated the channel when added to the cis side but not the trans side of the bilayer. Thus, SG-106 channels possess features that are similar to "native" SR Ca(2+)-release channels, are immunologically distinct from JFPs, and interact in seconds with nanomolar ryanodine in planar bilayers.  相似文献   

10.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

11.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

12.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

13.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

14.
The single-channel activity of rabbit skeletal muscle ryanodine receptor (skeletal RyR) and dog cardiac RyR was studied as a function of cytosolic [Ca2+]. The studies reveal that for both skeletal and cardiac RyRs, heterogeneous populations of channels exist, rather than a uniform behavior. Skeletal muscle RyRs displayed two extremes of behavior: 1) low-activity RyRs (LA skeletal RyRs, approximately 35% of the channels) had very low open probability (Po < 0.1) at all [Ca2+] and remained closed in the presence of Mg2+ (2 mM) and ATP (1 mM); 2) high-activity RyRs (HA skeletal RyRs) had much higher activity and displayed further heterogeneity in their Po values at low [Ca2+] (< 50 nM), and in their patterns of activation by [Ca2+]. Hill coefficients for activation (nHa) varied from 0.8 to 5.2. Cardiac RyRs, in comparison, behaved more homogeneously. Most cardiac RyRs were closed at 100 nM [Ca2+] and activated in a cooperative manner (nHa ranged from 1.6 to 5.0), reaching a high Po (> 0.6) in the presence and absence of Mg2+ and ATP. Heart RyRs were much less sensitive (10x) to inhibition by [Ca2+] than skeletal RyRs. The differential heterogeneity of heart versus skeletal muscle RyRs may reflect the modulation required for calcium-induced calcium release versus depolarization-induced Ca2+ release.  相似文献   

15.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

16.
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling.  相似文献   

17.
To define the roles of the alpha- and beta-ryanodine receptor (RyR) (sarcoplasmic reticulum Ca2+ release channel) isoforms expressed in chicken skeletal muscles, we investigated the ion channel properties of these proteins in lipid bilayers. alpha- and beta RyRs embody Ca2+ channels with similar conductances (792, 453, and 118 pS for K+, Cs+ and Ca2+) and selectivities (PCa2+/PK+ = 7.4), but the two channels have different gating properties. alpha RyR channels switch between two gating modes, which differ in the extent they are activated by Ca2+ and ATP, and inactivated by Ca2+. Either mode can be assumed in a spontaneous and stable manner. In a low activity mode, alpha RyR channels exhibit brief openings (tau o = 0.14 ms) and are minimally activated by Ca2+ in the absence of ATP. In a high activity mode, openings are longer (tau o1-3 = 0.17, 0.51, and 1.27 ms), and the channels are activated by Ca2+ in the absence of ATP and are in general less sensitive to the inactivating effects of Ca2+. beta RyR channel openings are longer (tau 01-3 = 0.34, 1.56, and 3.31 ms) than those of alpha RyR channels in either mode. beta RyR channels are activated to a greater relative extent by Ca2+ than ATP and are inactivated by millimolar Ca2+ in the absence, but not the presence, of ATP. Both alpha- and beta RyR channels are activated by caffeine, inhibited by Mg2+ and ruthenium red, inactivated by voltage (cytoplasmic side positive), and modified to a long-lived substate by ryanodine, but only alpha RyR channels are activated by perchlorate anions. The differences in gating and responses to channel modifiers may give the alpha- and beta RyRs distinct roles in muscle activation.  相似文献   

18.
Several agents are known to influence the contraction of skeletal and cardiac muscle via a modification of the Ca2+ release mechanism of the sarcoplasmic reticulum, e.g. caffeine, ryanodine, ruthenium red and doxorubicin. Of these substances, only the effects of caffeine and ryanodine have been described in smooth muscle. In this paper we describe the action of ruthenium red and doxorubicin on saponin-skinned mesenteric arteries of the rabbit. A high concentration (20 microM) of ruthenium red inhibited the Ca2+ release induced by low concentrations of caffeine, but had little effect on Ca2+ release induced by high concentrations (20 mM) of caffeine. This result indicates that the Ca2+ release channel of the internal Ca2+ store of smooth muscle cells is less sensitive to inhibition by ruthenium red than that of striated muscle. Doxorubicin in the micromolar range elicited a Ca2+ release and a concomitant contraction, essentially similar to its effect on skinned skeletal muscle cells. This work reveals further similarities between the Ca2+ release mechanisms of smooth and striated muscle, but the results also indicate that important differences between both systems may exist.  相似文献   

19.
Vesicle-45Ca2+ ion flux and planar lipid bilayer single-channel measurements have shown that the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (SR) is activated by micromolar concentrations of Cibacron Blue F3A-G (Reactive Blue 2) and Reactive Red 120. Cibacron Blue increased the 45Ca2+ efflux rate from heavy SR vesicles by apparently interacting with both the adenine nucleotide and caffeine activating sites of the channel. Dye-induced 45Ca2+ release was inhibited by Mg2+ and ruthenium red. In single channel recordings with the purified channel protein complex, Cibacron Blue increased the open time of the Ca2+ release channel without an apparent change in the conductance of the main and subconductance states of the channel.  相似文献   

20.
J Ma 《Biophysical journal》1995,68(3):893-899
Ca release channels from the junctional sarcoplasmic reticulum (SR) membranes of rabbit skeletal muscle were incorporated into the lipid bilayer membrane, and the inactivation kinetics of the channel were studied at large membrane potentials. The channels conducting Cs currents exhibited a characteristic desensitization that is both ligand and voltage dependent: 1) with a test pulse to -100 mV (myoplasmic minus luminal SR), the channel inactivated with a time constant of 3.9 s; 2) the inactivation had an asymmetric voltage dependence; it was only observed at voltages more negative than -80 mV; and 3) repetitive tests to -100 mV usually led to immobilization of the channel, which could be recovered by a conditioning pulse to positive voltages. The apparent desensitization was seen in approximately 50% of the experiments, with both the native Ca release channel (in the absence of ryanodine) and the ryanodine-activated channel (1 microM ryanodine). The native Ca release channels revealed heterogeneous gating with regard to activation by ATP and binding to ryanodine. Most channels had high affinity to ATP activation (average open probability (po) = 0.55, 2 mM ATP, 100 microM Ca), whereas a small portion of channels had low affinity to ATP activation (po = 0.11, 2 mM ATP, 100 microM Ca), and some channels bound ryanodine faster (< 2 min), whereas others bound much slower (> 20 min). The faster ryanodine-binding channels always desensitized at large negative voltages, whereas those that bound slowly did not show apparent desensitization. The heterogeneity of the reconstituted Ca release channels is likely due to the regulatory roles of other junctional SR membrane proteins on the Ca release channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号