首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To find mammalian analogues of exendin-4, a peptide from Helodermatidae venoms that interacts with newly discovered exendin receptors on dispersed acini from guinea pig pancreas, we examined the actions of recent additions to the vasoactive intestinal peptide/secretin/glucagon family of regulatory peptides. In every respect tested, the truncated form of glucagon-like peptide-1, GLP-1(7-36)NH2, mimicked the actions of exendin-4. Like exendin-4, GLP-1(7-36)NH2 caused an increase in acinar cAMP without stimulating amylase release. GLP-1(7-36)NH2-induced increases in cAMP were inhibited progressively by increasing concentrations of the specific exendin-receptor antagonist, exendin(9-39)NH2. In dispersed acini from guinea pig and rat pancreas, concentrations of GLP-1(7-36)NH2 that stimulated increases in cAMP caused potentiation of cholecystokinin-induced amylase release. Binding of 125I-[Y39]exendin-4 or 125I-GLP-1(7-36)NH2 to dispersed acini from guinea pig pancreas was inhibited by adding increasing concentrations of unlabeled exendin-4 or GLP-1(7-36)NH2. We conclude that the mammalian peptide GLP-1(7-36)NH2 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Exendin(9-39)NH2, a competitive antagonist of the actions of GLP-1(7-36)NH2 in pancreatic acini, may be a useful tool for examining the physiological actions of this peptide.  相似文献   

2.
There is current interest in the use of inhibitors of dipeptidyl peptidase IV (DP IV) as therapeutic agents to normalize glycemic excursions in type 2 diabetic patients. Data indicating that metformin increases the circulating amount of active glucagon-like peptide-1 (GLP-1) in obese nondiabetic subjects have recently been presented, and it was proposed that metformin might act as a DP IV inhibitor. This possibility has been investigated directly using a number of in vitro methods. Studies were performed on DP IV enzyme from three sources: 20% human serum, purified porcine kidney DP IV, and recombinant human DP IV. Inhibition of DP IV hydrolysis of the substrate Gly-Pro-pNA by metformin was examined spectrophotometrically. Effects of metformin on GLP-1([7-36NH2]) degradation were assessed by mass spectrometry. In addition, surface plasmon resonance was used to establish whether or not metformin had any effect on GLP-1([7-36NH2]) or GLP-1([9-36NH2]) interaction with immobilized porcine or human DP IV. Metformin failed to alter the kinetics of Gly-Pro-pNA hydrolysis or GLP-1 degradation tested according to established methods. Surface plasmon resonance recordings indicated that both GLP-1([7-36NH2]) and GLP-1([9-36NH2]) show micromolar affinity (K(D)) for DP IV, but neither interaction was influenced by metformin. The results conclusively indicate that metformin does not act directly on DP IV, therefore alternative explanations for the purported effect of metformin on circulating active GLP-1 concentrations must be considered.  相似文献   

3.
Distribution and molecular forms of glucagon-like peptide in the dog   总被引:3,自引:0,他引:3  
Using glucagon-like peptide-1 N-terminus and C-terminus directed antisera, we investigated concentration and molecular forms of GLP-1 immunoreactivity (IR) in extracts of various tissues of the dog. GLP-1 IR measured with C-terminus-directed antiserum R2337 (GLP-1 IR-CT) was high in the ileum, appendix, jejunum, colon, and gastric fundus and body. GLP-1 IR measured with N-terminus-directed antiserum R1043 (GLP-1 IR-NT) was high only in the pancreas, and gastric fundus and body. Only GLP-1 IR-CT was found in the hypothalamus, thalamus and medulla oblongata. No immunoreactive materials were detected in the liver, spleen and kidney. Gel-filtration with Sephadex G-50 showed two peaks of both GLP-1 IR-CT and GLP-1 IR-NT, at 10kd and at the position of GLP-1 (1-36 amide) in the pancreatic extract, and one peak at 10kd in the stomach extract. Ileal extracts showed 3 peaks of GLP-1 IR-CT at 10kd, at the position of GLP-1(1-36 amide) and GLP-1(7-36 amide), respectively, but GLP-1 IR-NT was coeluted with GLP-1(1-36 amide). Hypothalamic extracts showed a single peak at the position of GLP-1(7-36 amide). These results suggest that processing of preproglucagon differs in different organs, and that the main GLP-1-related products are a large molecular form and GLP-1(1-36 amide) or GLP-1(1-37) in the pancreas, and GLP-1(7-36 amide) or GLP-1 (7-37) in the ileum and hypothalamus.  相似文献   

4.
High-affinity binding sites for glucagon-like peptide-1 7-36 amide (GLP-1 7-36 NH2) were identified in rat brain and lung membranes. Binding of [125I]GLP-1 7-36 NH2 was rapid, reversible, specific, saturable and pH dependent. Specific binding in the central nervous system was particularly high in the hypothalamus and the brain stem. Oxyntomodulin, glucagon-like peptide-1, glucagon-like peptide-2 and glucagon were 100-1000-fold less potent than GLP-1 7-36 NH2 in competition for this binding site.  相似文献   

5.
We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7-36) and GLP-1-(9-36) significantly reduced (P < 0.01) LV end-diastolic pressure [GLP-1-(7-36), 28 +/- 1 to 15 +/- 2 mmHg; GLP-1-(9-36), 29 +/- 2 to 16 +/- 1 mmHg] and significantly increased (P < 0.01) the first derivative of LV pressure [GLP-1-(7-36), 1,315 +/- 81 to 2,195 +/- 102 mmHg/s; GLP-1-(9-36), 1,336 +/- 77 to 2,208 +/- 68 mmHg] and cardiac output [GLP-1-(7-36), 1.5 +/- 0.1 to 1.9 +/- 0.1 l/min; GLP-1-(9-36), 2.0 +/- 0.1 to 2.4 +/- 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.  相似文献   

6.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

7.

Introduction

Inhibitors of dipeptidyl peptidase-IV (DPP-IV), which decrease the degradation of glucose-lowering GLP-1(7-36) to the metabolically inactive GLP-1(9-36), are current new treatment options for patients with type 2 diabetes mellitus, a high-risk population for cardiovascular disease. However, the effects of the metabolite GLP-1(9-36) on atherosclerosis are unknown. Thus, the present study examined the effect of GLP-1(9-36) on chemokine-induced CD4-positive lymphocyte migration as one of the early and critical steps in atherogenesis.

Methods and Results

Stimulation of isolated human CD4-positive lymphocytes with SDF-1 led to a 3.4 fold (p<0.001; n = 7) increase in cell migration. Pretreatment of cells with GLP-1(9-36) reduced this effect in a concentration-dependent manner by 41% to a 2.0 fold induction at 10 nmol/L GLP-1(9-36) (p<0.001 compared to SDF-1-treated cells, n = 7). Similar effects were obtained when RANTES was used as a chemokine to induce cell migration. The action of GLP-1(9-36) on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity. Downstream in the PI-3 kinase signaling pathway, GLP-1(9-36) inhibited SDF-1-induced phosphorylation of MLC and cofilin and decreased f-actin formation as well as ICAM3 translocation as shown by Western blotting, flow cytometry and immunohistochemistry, respectively. However, the effect of GLP-1(9-36) on PI-3 kinase signaling was not associated with increased intracellular levels of cAMP. Furthermore, experiments with siRNA demonstrated that the inhibitory effect of GLP-1(9-36) on SDF-1-induced ICAM3-translocation was preserved in human CD4-positive lymphocytes lacking the GLP-1 receptor, suggesting signaling independent of the known GLP-1 receptor.

Conclusion

Thus, GLP-1(9-36) inhibits chemokine-induced CD4-positive lymphocyte migration by inhibition of the PI3-kinase pathway independent of cAMP and GLP-1 receptor signaling. Further studies are needed to assess whether such effects may be clinically relevant for patients with type 2 diabetes treated with DPP-IV inhibitors.  相似文献   

8.
Glucagon-like peptide-1 (GLP-1, 7-36) is capable of restoring normal glucose tolerance in aging, glucose-intolerant Wistar rats and is a potent causal factor in differentiation of human islet duodenal homeobox-1-expressing cells into insulin-releasing beta cells. Here we report stable isotope-based dynamic metabolic profiles of rat pancreatic epithelial (ARIP) and human ductal tumor (PANC-1) cells responding to 10 nM GLP-1 treatment in 48 h cultures. Macromolecule synthesis patterns and substrate flow measurements using gas chromatography/mass spectrometry (MS) and the stable [1,2-13C2]glucose isotope as the tracer showed that GLP-1 induced a significant 20% and 60% increase in de novo fatty acid palmitate synthesis in ARIP and PANC-1 cells, respectively, and it also induced a significant increase in palmitate chain elongation into stearate utilizing glucose as the primary substrate. Distribution of 13C in other metabolites indicated no changes in the rates of nucleic acid ribose synthesis, glutamate oxidation, or lactate production. Tandem high-performance liquid chromatography-ion trap MS analysis of the culture media demonstrated mass insulin secretion by GLP-1-treated tumor cells. Metabolic profile changes in response to GLP-1-induced cell differentiation include selective increases in de novo fatty acid synthesis from glucose and consequent chain elongation, allowing increased membrane formation and greater insulin availability and release.  相似文献   

9.
Exogenous glucagon-like peptide 2 (GLP-2) prevents intestinal atrophy and increases nutrient absorption in term newborn pigs receiving total parenteral nutrition (TPN). We tested the hypothesis that the immature intestine of fetuses and preterm neonates has a diminished nutrient absorption response to exogenous GLP-2. This was accomplished using catheterized fetal pigs infused for 6 days (87-91% of gestation) with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 7) or saline (n = 7), and cesarean-delivered preterm pigs (92% of gestation) that received TPN with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 8) or saline (n = 7) for 6 days after birth. Responses to GLP-2 were assessed by measuring intestinal dimensions, absorption of nutrients (glucose, leucine, lysine, proline) by intact tissues and brush border membrane vesicles, and abundance of sodium-glucose cotransporter mRNA. Infusion of GLP-2 increased circulating GLP-2 levels in fetuses, but did not increase intestinal mass or absorption of nutrients by intact tissues and brush border membrane vesicles, except for lysine. Administration of exogenous GLP-2 to preterm TPN-fed pigs similarly did not increase rates of nutrient absorption, yet nutrient absorption capacities of the entire small intestine tended to increase (+10-20%, P < 0.10) compared with TPN alone due to increased intestinal mass (+30%, P < 0.05). GLP-2 infusion did not increase sodium-glucose cotransporter-1 mRNA abundance in fetuses or postnatal preterm pigs. Hence, the efficacy of exogenous GLP-2 to improve nutrient absorption by the intestine of fetal and preterm pigs is limited compared with term pigs and more mature animals and humans.  相似文献   

10.
The lipolytic effect of GLP-1(1-36)-amide, GLP-1(7-36) amide and GLP-2 [proglucagon(126-159)] has been studied in isolated rat adipocytes. Glycerol release and cyclic AMP content were measured after incubation of adipocytes with GLPs and results have been compared with those obtained in the presence of glucagon. GLP-1(7-36)-amide and GLP-1(1-36)-amide at 10(-8), 10(-7) and 10(-6) M concentrations activated glycerol release, the truncated peptide having a more potent effect. On the other hand, GLP-2 had no effect on glycerol release. Also, it has been found that 10(-6) M GLP-1(7-36)-amide increases cyclic AMP content in adipocytes and does not compete with glucagon binding. These results demonstrate that GLP-1(7-36)-amide has a lipolytic effect on isolated rat adipocytes through different receptors than glucagon.  相似文献   

11.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

12.

Aims

Glucagon-like peptide 1 (GLP-1) is an insulin secretagogue, released in response to meal ingestion and efficiently lowers blood glucose in Type 2 diabetic patients. GLP-1(7-36) is rapidly metabolized by dipeptidyl peptidase IV to the major metabolite GLP-1(9-36)-amide, often thought to be inactive. Inhibitors of this enzyme are widely used to treat diabetes. Our aim was to characterize the binding of GLP-1(9-36) to native mouse tissues and to cells expressing GLP1-R as well as to measure functional responses in the mouse aorta compared with GLP-1(7-36).

Main methods

The affinity of [125I]GLP-1(7-36) and [125I]GLP-1(9-36) was measured in mouse tissues by saturation binding and autoradiography used to determine receptor distribution. The affinity of both peptides was compared in binding to recombinant GLP-1 receptors using cAMP and scintillation proximity assays. Vasoactivity was determined in mouse aortae in vitro.

Key findings

In cells expressing GLP-1 receptors, GLP-1(7-36) bound with the expected high affinities (0.1 nM) and an EC50 of 0.07 nM in cAMP assays but GLP-1(9-36) bound with 70,000 and 100,000 fold lower affinities respectively. In contrast, in mouse brain, both labeled peptides bound with a single high affinity, with Hill slopes close to unity, although receptor density was an order of magnitude lower for [125I]GLP-1(9-36). In functional experiments both peptides had similar potencies, GLP-1(7-36), pD2 = 7.40 ± 0.24 and GLP-1(9-36), pD2 = 7.57 ± 0.64.

Significance

These results suggest that GLP-1(9-36) binds and has functional activity in the vasculature but these actions may be via a pathway that is distinct from the classical GLP-1 receptor and insulin secretagogue actions.  相似文献   

13.
Glucagon-like peptide 1 (GLP-1) is a potent anti-hyperglycemic hormone currently under investigation for its therapeutic potential. However, due to rapid degradation by dipeptidyl peptidase IV (DPP IV), which limits its metabolic stability and eliminates its insulinotropic activity, it has been impossible to assess its true efficacy in vivo. In chloralose-anesthetized pigs given valine-pyrrolidide (to block endogenous DPP IV activity), the independent effects of GLP-1-(7-36) amide on glucose and insulin responses to intravenous glucose were assessed, and the metabolite generated by DPP IV, GLP-1-(9-36) amide, was investigated for any ability to influence these responses. GLP-1-(7-36) amide enhanced insulin secretion (P < 0.03 vs. vehicle), but GLP-1-(9-36) amide was without effect, either alone or when coinfused with GLP-1-(7-36) amide. In contrast, GLP-1-(9-36) amide did affect glucose responses (P < 0.03). Glucose excursions were greater after saline (121 +/- 17 mmol x l(-1) x min) than after GLP-1-(9-36) amide (73 +/- 19 mmol x l(-1) x min; P < 0.05), GLP-1-(7-36) amide (62 +/- 13 mmol x l(-1) x min; P < 0.02) or GLP-1-(7-36) amide + GLP-1-(9-36) amide (50 +/-13 mmol x l(-1) x min; P < 0.005). Glucose elimination rates were faster after GLP-1-(7-36) amide + (9-36) amide (10.3 +/- 1.2%/min) than after GLP-1-(7-36) amide (7.0 +/- 0.9%/min; P < 0.04), GLP-1-(9-36) amide (6.8 +/- 1.0%/min; P < 0.03), or saline (5.4 +/- 1.2%/min; P < 0.005). Glucagon concentrations were unaffected. These results demonstrate that GLP-1-(9-36) amide neither stimulates insulin secretion nor antagonizes the insulinotropic effect of GLP-1-(7-36) amide in vivo. Moreover, the metabolite itself possesses anti-hyperglycemic effects, supporting the hypothesis that selective DPP IV action is important in glucose homeostasis.  相似文献   

14.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

15.
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.  相似文献   

16.
We examined the Na(+)-dependency of the effects of GLP-1(7-36)amide in normal, overnight cultured rat islets. It was found that GLP-1(7-36)amide stimulated insulin secretion, 45Ca(2+)-efflux, and 86Rb(+)-efflux from prelabelled islets. All these effects were abolished by omitting Na+ from the medium and replacing it with N-methyl-glucamine. This suggests that GLP-1(7-36)amide stimulates insulin secretion by depolarizing the beta-cells by increasing their permeability to Na+.  相似文献   

17.
Abstract: Specific binding of glucagon-like peptide (GLP)-1(7–36)amide was detected in several rat brain areas, with the highest values being found in hypothalamic nuclei and the nucleus of the solitary tract. In hypothalamus and brainstem homogenate binding of 125I-GLP-1(7–36)amide was time, temperature, and protein content dependent and was inhibited by unlabeled proglucagon-derived peptides. The rank order of potency was GLP-1(7–36)amide ? GLP-1(1–36)amide > GLP-1(1–37) ? GLP-2 > glucagon. Scatchard analysis of the steady-state binding data was consistent with the presence of both high- and low-affinity binding sites in hypothalamus and brainstem. Brain 125I-GLP-1(7–36)amide-binding protein complexes were covalently cross-linked using disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single radiolabeled band of Mr 56,000 identified in both hypothalamus and brainstem homogenates was unaffected by reducing agents. An excess of unlabeled GLP-1(7–36)amide abolished the band labeling, whereas glucagon had no effect. Other unlabeled GLPs inhibited Mr 56,000 complex labeling with the following order of potency: GLP-1(1–36)amide > GLP-1(1–37) > GLP-2. The binding of 125I-GLP-1(7–36)amide and the intensity of the cross-linked band were similarly inhibited in a dose-response manner by increasing concentrations of unlabeled GLP-1(7–36)amide. Covalent Mr 56,000 125I-GLP-1(7–36)amide-binding protein complexes solubilized by Triton X-100 were adsorbed onto wheat germ agglutinin. Our results suggest that the GLP-1(7–36)amide receptor in rat brain is a glycoprotein with a single binding subunit that has a greater molecular weight but binding features and ligand specificity similar to those of its peripheral tissue counterparts.  相似文献   

18.
Abstract: This study was designed to determine the possible role of brain glucagon-like peptide-1 (GLP-1) receptors in feeding behavior. In situ hybridization showed colocalization of the mRNAs for GLP-1 receptors, glucokinase, and GLUT-2 in the third ventricle wall and adjacent arcuate nucleus, median eminence, and supraoptic nucleus. These brain areas are considered to contain glucose-sensitive neurons mediating feeding behavior. Because GLP-1 receptors, GLUT-2, and glucokinase are proteins involved in the multistep process of glucose sensing in pancreatic β cells, the colocalization of specific GLP-1 receptors and glucose sensing-related proteins in hypothalamic neurons supports a role of this peptide in the hypothalamic regulation of macronutrient and water intake. This hypothesis was confirmed by analyzing the effects of both systemic and central administration of GLP-1 receptor ligands. Acute or subchronic intraperitoneal administration of GLP-1 (7–36) amide did not modify food and water intake, although a dose-dependent loss of body weight gain was observed 24 h after acute administration of the higher dose of the peptide. By contrast, the intracerebroventricular (i.c.v.) administration of GLP-1 (7–36) amide produced a biphasic effect on food intake characterized by an increase in the amount of food intake after acute i.c.v. delivery of 100 ng of the peptide. There was a marked reduction of food ingestion with the 1,000 and 2,000 ng doses of the peptide, which also produced a significant decrease of water intake. These effects seemed to be specific because i.c.v. administration of GLP-1 (1–37), a peptide with lower biological activity than GLP-1 (7–36) amide, did not change feeding behavior in food-deprived animals. Exendin-4, when given by i.c.v. administration in a broad range of doses (0.2, 1, 5, 25, 100, and 500 ng), proved to be a potent agonist of GLP-1 (7–36) amide. It decreased, in a dose-dependent manner, both food and water intake, starting at the dose of 25 ng per injection. Pretreatment with an i.c.v. dose of a GLP-1 receptor antagonist [exendin (9–39); 2,500 ng] reversed the inhibitory effects of GLP-1 (7–36) amide (1,000 ng dose) and exendin-4 (25 ng dose) on food and water ingestion. These findings suggest that GLP-1 (7–36) amide may modulate both food and drink intake in the rat through a central mechanism.  相似文献   

19.
Abstract : This study was designed to gain better insight into the relationship between glucagon-like peptide-1 (GLP-1) (7-36) amide and vasopressin (AVP) and oxytocin (OX). In situ hybridization histochemistry revealed colocalization of the mRNAs for GLP-1 receptor, AVP, and OX in neurons of the hypothalamic supraoptic and paraventricular nuclei. To determine whether GLP-1(7-36)amide alters AVP and/or OX release, both in vivo and in vitro experimental study designs were used. In vivo, intravenous administration of 1 μg of GLP-1(7-36)amide into the jugular vein significantly decreased plasma AVP and OX concentrations. In vitro incubation of the neurohypophysis with either 0.1 or 1 μg of GLP-1(7-36)amide did not modify the release of AVP. However, addition of 1 μg of GLP-1(7-36)amide to the incubation medium increased slightly the secretion of OX. The coexpression of GLP-1 receptor and AVP mRNAs in hypothalamic supraoptic and paraventricular nuclei gives further support to the already reported central effects of GLP-1(7-36)amide on AVP. Our findings also suggest a dual secretory response of AVP and OX to the effect of GLP-1(7-36)amide, which most likely is related to the amount and/or the route of peptide administration.  相似文献   

20.
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号