首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the viral matrix (M) proteins in Vero cells infected with 18 strains of subacute sclerosing panencephalitis (SSPE) virus and measles virus was examined by immunocytochemistry and Western blot analysis using an anti-M monospecific serum and two sera against the M protein specific synthetic peptides. By immunocytochemistry using the anti-M monospecific serum, M protein was detected in all of the virus-infected cells regardless of cell-free virus production. M proteins of the seven non-productive strains were found to vary significantly in their epitope, in their reactivity to different assay systems, and in their molecular weight, whereas M proteins of the other 11 productive strains were detected consistently. These results suggest diversification of M protein of the non-productive strains.  相似文献   

2.
Immune precipitation was used to study the humoral immune response of patients with subacute sclerosing panencephalitis (SSPE). Patients with SSPE have a progressive infection of the CNS by measles or a measles variant despite high serum antibody levels to measles virus as measured by standard serologic techniques. However, when the antibody response to individual measles virus proteins was measured, we found a striking reduction in the ability of sera from patients with SSPE to precipitate the matrix (M) protein as compared to the precipitation of the M protein by sera from normal adults who had natural measles infection in childhood, or by convalescent sera obtained 3 to 5 weeks after a naturally occurring measles infection. The decreased antibody response to the M protein in sera from patients with SSPE occurred despite a vigorous antibody response to the other viral proteins, suggesting a selective defect in the production of antibody to a single viral protein. The reduced anti-M antibody in sera from patients with SSPE was demonstrated whether immune precipitation was performed with wild-type measles virus or SSPE virus proteins. These results suggest that in SSPE only small amounts of the M protein are produced. This result may help explain how measles virus persists in the central nervous system of patients with SSPE.  相似文献   

3.
Young adult male ferrets were inoculated intracerebrally (i.c.) with a cell-associated encephalitogenic subacute sclerosing panencephalitis (SSPE) virus strain to study the pathogenesis of the disease at the ultrastructural level. Most became acutely ill in 8-13 days. Areas of the brain were examined with indirect immunoperoxidase labeling techniques to detect measles antigen. None of these animals showed the characteristic viral nucleocapsids or marked inflammatory response associated with SSPE. However, all had positive immunolabeling of unstructured virus antigen, especially in post-synaptic regions in all areas of the brain that were examined. One ferret, immunized with measles vaccine 40 days prior to challenge with SSPE, became ill 18 days post inoculation (p.i.). Perivascular cuffings of inflammatory cells and large cytoplasmic inclusions of fuzzy nucleocapsids were found in the brain and spinal cord. The study indicates that ferrets which become acutely ill after inoculation with cell-associated SSPE virus do so before there is a marked cellular immune response or formation of virus nucleocapsids.  相似文献   

4.
The Biken strain of subacute sclerosing panencephalitis (SSPE) virus caused a fatal neurologic disease in adult mice after intracerebral inoculation. However, the mice were completely protected from the disease when a high dose of measles virus was given intracerebrally after the SSPE virus infection. The measles virus inoculation induced interferon production and immune responses. An experiment with athymic nude mice showed that interferon and anti-measles antibody were able to prolong the incubation period of the disease but not to protect the SSPE virus-infected nude mice from death. For complete protection, T lymphocytes appeared to be essential. The present study suggested that the protective effect of measles virus inoculation is basically due to the induction of immune responses and that SSPE virus infection in mice is susceptible to immune reactions.  相似文献   

5.
Brain materials from four cases of subacute sclerosing panencephalitis were examined by immune fluorescence with monoclonal antibodies against five structural components of measles virus. All five antigens including the matrix component were present in the brain tissues of all cases. A defective Vero cell-associated virus isolate from one of the cases produced all of the structural components except the matrix protein.  相似文献   

6.
T C Wong  M Ayata  S Ueda    A Hirano 《Journal of virology》1991,65(5):2191-2199
We identified an acute measles virus (Nagahata strain) closely related to a defective virus (Biken strain) isolated from a patient with subacute sclerosing panencephalitis (SSPE). The proteins of Nagahata strain measles virus are antigenically and electrophoretically similar to the proteins of Edmonston strain measles virus. However, the nucleotide sequence of the Nagahata matrix (M) gene is significantly different from the M genes of all the acute measles virus strains studied to date. The Nagahata M gene is strikingly similar to the M gene of Biken strain SSPE virus isolated several years later in the same locale. Eighty percent of the nucleotide differences between the Nagahata and Biken M genes are uridine-to-cytosine transitions known as biased hypermutation, which has been postulated to be caused by a cellular RNA-modifying activity. These biased mutations account for all but one of the numerous missense genetic changes predicted to cause amino acid substitutions. As a result, the Biken virus M protein loses conformation-specific epitopes that are conserved in the M proteins of Nagahata and Edmonston strain acute measles viruses. These conformation-specific epitopes are also absent in the cryptic M proteins encoded by the hypermutated M genes of two other defective SSPE viruses (Niigata and Yamagata strains). Nagahata-like sequences are found in the M genes of at least five other SSPE viruses isolated from three continents. These data indicate that Biken strain SSPE virus is derived from a progenitor closely resembling Nagahata strain acute measles virus and that biased hypermutation is largely responsible for the structural defects in the Biken virus M protein.  相似文献   

7.
The matrix (M) genes of Yamagata-1 strain subacute sclerosing panencephalitis virus passaged in African green monkey kidney cells and human neuroblastoma cells displayed strikingly nonrandom sequence divergence. The genes of both substrains shared a large number of uridine (U) to cytidine (C) transitions, but the latter contained numerous additional U to C changes in a localized region. Over 90% of the additional mutations were identical to the hypermutated nucleotides in the M gene found in a measles inclusion body encephalitis case. The nonrandom nature, the apparent host dependency, and the abrupt boundaries of these mutations suggest that these mutations might be caused by an extrinsic biased mutational activity rather than intrinsic polymerase errors. This mutational activity might account for the extraordinarily high C to U ratios in the non-protein-coding regions of both the M and fusion genes of wild-type measles virus.  相似文献   

8.
The lymphoproliferative response of human peripheral blood mononuclear cells to different measles virus antigen preparations was studied with lymphocytes from 38 measlesseropositive healthy donors and 4 subacute sclerosing panencephalitis patients. The response was very weak or absent in all of the controls and in three of the subacute sclerosing panencephalitis patients. The fourth subacute sclerosing panencephalitis patient had fluctuating levels of lymphocyte stimulation by measles antigens. The response was very strong for several months and during this time the parameters of the test system were characterized. It was discovered that a membrane preparation of measles-infected cells caused stimulation equal to that of highly purified virions. Purified measles ribonucleoprotein also induced specific stimulation, although lower than that seen with other types of measles antigens. Results of experiments on stimulation kinetics and antigen dose responses were compatible with antigen-specific stimulation. Enriched T cells were more vigorously stimulated than unfractionated peripheral blood mononuclear cells suggesting that this transformation test is specific for T cells.  相似文献   

9.
The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the brain sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.  相似文献   

10.
11.
Consistent results have not been obtained yet on the presence of antibody to the M protein of measles virus in the sera of patients with subacute sclerosing panencephalitis (SSPE). We performed a comparative study on various immunoprecipitation systems which appeared in the literature and found that the difference in the composition of the solubilizing buffer produced a large variety of results on the immunoprecipitation. [35S]Methionine-labeled Vero cells infected with the Edmonston strain of measles virus were solubilized by 10 different buffers and reacted with hyperimmune rabbit serum to whole virus, monospecific antisera to H, NP, and M proteins of the virus, normal adults' sera, and the sera from 16 SSPE patients. The immune complex was absorbed by protein A and both solubilization and precipitation rates were compared with each viral protein. Although viral proteins were solubilized by all buffers, the solubilization rate varied considerably. M protein was solubilized and was not coprecipitated nonspecifically with any of the other viral proteins. Purified protein A conjugated to Sepharose was preferable to Staphylococcus aureus for absorption of the immune complex since the latter absorbed both viral and host proteins nonspecifically. The precipitation rates of the viral proteins also varied according to the buffers. Better solubilization of the viral proteins seemed to reduce their rate of precipitation for which the presence of SDS may be responsible, and the presence of the protease inhibitors may also affect the results of immunoprecipitation. Detection of M protein in the immunoprecipitates was largely influenced by the kind of buffer used: some buffers could detect it clearly, but others could not defect it at all. Among the solubilizing buffers tested, Saleh's buffer (Virology 93: 369-376 (1979)),, which contains 0.5% DOC and 0.5% Triton X-100, was most reliable for detection of the anti-M antibody in the rabbit serum, because it showed a high solubilization and high precipitation rates of viral proteins without nonspecific absorption by protein A or coprecipitation of M proteins with any of the other proteins. Using this buffer, we could definitely detect M proteins in the immunoprecipitates from the sera of all six healthy adults and 15 out of 16 patients with SSPE. It was found, however, that the amount of M proteins in SSPE patients was lower than that in healthy adults and varied considerably.  相似文献   

12.
13.
Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by prolonged persistent infection of the central nervous system with a measles virus (MV) mutant called SSPE virus. At present, there is no effective treatment to completely cure SSPE and development of a new therapeutic measure(s) against this fatal slow virus infection is needed. We previously reported that replication of MV and SSPE virus was effectively inhibited by small interfering RNA (siRNA), either chemically synthetic or plasmid-driven ones, that were targeted against different sequences of the mRNA for the L protein of MV. In this study, we have generated recombinant adenovirus expressing the siRNAs (rAd-siRNA-MV-L2, -L4 and -L5) and demonstrated that these rAd-siRNAs efficiently inhibited replication of MV and SSPE virus in a dose-dependent manner. Due to their high capacity for gene delivery to nerve cells and the potential to inhibit SSPE virus replication, the rAd-siRNAs could be a good candidate for a novel therapeutic measure against SSPE.  相似文献   

14.
Growth of cell-free subacute sclerosing panencephalitis (SSPE) virus was compared with that of measles virus in three human neural cell lines; neuroblastoma, oligodendroglioma, and glioblastoma. The Edmonston strain of measles virus replicated in these neural cells as efficiently as in Vero cells. In contrast, the growth of the Mantooth strain of SSPE virus was suppressed moderately in neuroblastoma cells and markedly in oligodendroglioma and glioblastoma cells in spite of the induction of apparent cytopathic effects in these cells. Virus adsorption, defective interfering particles, interferon, and temperature sensitivity were not responsible for this low yield of SSPE virus in neural cell lines. Synthesis of viral proteins of SSPE virus was slower than that of measles virus in oligodendroglioma and glioblastoma cells. These results suggest that the slow rate of synthesis of viral proteins may be relevant to the low yield of SSPE virus in neural cells.  相似文献   

15.
16.
17.
A Hirano  M Ayata  A H Wang    T C Wong 《Journal of virology》1993,67(4):1848-1853
We have developed an in vitro nucleocapsid-binding assay for studying the function of the matrix (M) protein of measles virus (MV) (A. Hirano, A. H. Wang, A. F. Gombart, and T. C. Wong, Proc. Natl. Acad. Sci. USA, 89:8745-8749, 1992). In this communication we show that the M proteins of three MV strains that cause acute infection (Nagahata, Edmonston, and YN) bind efficiently to the viral nucleocapsids whereas the M proteins of four MV strains isolated from patients with subacute sclerosing panencephalitis (SSPE) (Biken, IP-3, Niigata, and Yamagata) fail to bind to the viral nucleocapsids. MV Biken (an SSPE-related virus) produces variant M sequences which encode two antigenically distinct forms of M protein. A serine-versus-leucine difference is responsible for the antigenic variation. MV IP-3 (an SSPE-related virus) also produces variant M sequences, some of which have been postulated to encode a functional M protein responsible for the production of an infectious revertant virus. However, the variant M proteins of Biken and IP-3 strains show no nucleocapsid-binding activity. These results demonstrate that the nucleocapsid-binding function is conserved in the M proteins of MV strains that cause acute infection and that the M proteins of MV strains that cause SSPE exhibit a common defect in this function. Analysis of chimeric M proteins indicates that mutations in the amino-terminal, carboxy-proximal, or carboxy-terminal region of the M protein all abrogate nucleocapsid binding, suggesting that the M protein conformation is important for interaction with the viral nucleocapsid.  相似文献   

18.
19.
A measles virus (MV) genome originally derived from brain cells of a subacute sclerosing panencephalitis patient expressed in IP-3-Ca cells an unstable MV matrix protein and was unable to produce virus particles. Transfection of this MV genome into other cell lines did not relieve these defects, showing that they are ultimately encoded by viral mutations. However, these defects were partially relieved in a weakly infectious virus which emerged from IP-3-Ca cells and which produced a matrix protein of intermediate stability. The sequences of several cDNAs related to the unstable and intermediately stable matrix proteins showed many differences in comparison with a stable matrix protein sequence and even appreciable heterogeneity among themselves. Nevertheless, partial restoration of matrix protein stability could be ascribed to a single additional amino acid change. From an examination of additional genes, we estimated that, on average, each MV genome in IP-3-Ca cells differs from the others in 30 to 40 of its 16,000 bases. The role of extreme variability of RNA virus genomes in persistent viral infections is discussed in the context of the pathogenesis of subacute sclerosing panencephalitis and of other human diseases of suspected viral etiology.  相似文献   

20.
Human prostate cells chronically infected with the Mantooth strain of subacute sclerosing panencephalitis (SSPE) virus multiply normally, fuse only occasionally to form giant cells, and yet have twisted intracytoplasmic nucleocapsids. These cells are able to support replication of vesicular stomatitis virus, although they release only small amounts of SSPE virus. To determine why carrier cells do not produce virus, they were examined with techniques for surface replication, freeze-fracturing, and immunoperoxidase labeling with SSPE antibody. The surface of carrier cells, like that of productive cells, is characterized by ridges crowned with viral antigens and devoid of the intramembrane particles revealed by freeze-fracture techniques. Since surface ridges form where nucleocapsids attach to the membrane, the shape and length of ridges are indicative of the shape and length of the underlying nucleocapsid. Whereas ridges on productive cells are serpentine in shape, those on carrier cells are typically straight or hairpin shaped, and the hairpin ridges are twice as long as serpentine ridges on productive cells. Furthermore, the spacing between ridges on carrier cells is never as small as that in productive infections, so that continuous sheets of viral membrane are never formed. The majority of carrier cells lack the round viral buds observed in productive cells but have, instead, many elongated processes attached to the cell surface. Each of these processes contains one or two hairpin ridges overlying hairpin-shaped nucleocapsids. These "hairpin buds" are restricted to a single region of the carrier cell surface, whereas viral buds are distributed over the entire surface of productive cells. Thus, there are several structural defects in carrier cells that depend on the specific interaction of a certain viral strain with a certain cell type. These defects prevent the deployment of viral antigen in some regions of the cell surface, the formation of nucleocapsids of normal length, the coiling of attached nucleocapsids, and the consolidation of sheets of viral membrane into spherical buds with the nucleocapsids coiled inside. These defects may account for the failure of carrier cells to shed infectious virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号