首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-four isolates of Penicillium (including a green-spored mutant from a French Brie cheese, Penicillium camemberti) with a proposed relationship to the white cheese mold P. camemberti were investigated by immunological procedures. These penicillia, which are representative of species that have caused considerable taxonomic confusion, had common micromorphology (terverticillate penicilli with rough and smooth stipes and smooth ellipsoidal to subglobose [(3 to 5) X 2 1/2 to 4 1/2 microns] conidia); growth rates; good growth on creatine sucrose agar, cheese, and other products with a high amount of protein and lipid as a primary habitat; production (with the exception of Penicillium solitum) of cyclopiazonic acid; and the ability to grow at low temperatures and water activities. The isolates that were investigated proved to be strictly antigenically related. Absorbed antiserum of the green-spored mutant of P. camemberti showed a specific precipitin band when tested by immunodiffusion either with its homologous reference antigen or with the exoantigens obtained from different isolates. The precipitin band was not present in any P. camemberti starter culture but in many unwanted cheese contaminants. The precipitin band can be used in the purity control of P. camemberti starter culture spore preparations. Analysis of the exoantigens of all the cultures by reversed phase high-performance liquid chromatography allowed us to subdivide these penicillia into nine groups below the species level. The results indicate that P. commune Thom is the wild-type ancestor of P. camemberti.  相似文献   

2.
Defined strains of the genus Penicillium used as starter cultures for food and strains isolated from mold-fermented foods were analyzed for their ability to inhibit the growth of Micrococcus luteus DSM 348 used as an indicator organism. Most of the strains belonging to the species Penicillium nalgiovense showed antagonistic activity in agar diffusion assays. Penicillium camemberti and Penicillium roqueforti strains proved to be inactive in these tests. The inhibitory substance excreted by P. nalgiovense strains was totally inactivated when treated with beta-lactamase (penicillinase), indicating that a beta-lactam antibiotic is produced by these strains. This observation was verified by PCRs with primer sets specific to the [delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine] synthetase gene (pcbAB), the isopenicillin-N-synthase gene (pcbC), and the acyl coenzyme A:6-aminopenicillanic acid acyltransferase gene (penDE) from Penicillium chrysogenum using chromosomal DNA of the fungal strains as a template. These results indicate that penicillin biosynthesis is a characteristic often found in strains of P. nalgiovense. No specific PCR signal could be identified with DNA from P. camemberti and P. roqueforti.  相似文献   

3.
RFLP of ITS rDNA is proposed as a useful tool for molecular identification of the most common species of biverticillate penicillia. 60 isolates were analysed representing 13 species and 21 unique sequences were produced. The combination of five restriction enzymes was successful in separating 12 species. However, the variety Penicillium purpurogenum var. rubrisclerotium remained indistinguishable from Penicillium funiculosum. P. funiculosum appeared as the most confused species, being mis-identified with Penicillium miniolutum and Penicillium pinophilum, which were originally part of the species, and with P. purpurogenum perhaps because of the common production of red pigment. Penicillium variabile was difficult to investigate as introns were found on half of the isolates. Penicillium piceum, Penicillium rugulosum, Penicillium loliense, Penicillium erythromellis and P. purpurogenum were homogeneous from molecular and morphological positions and corresponded to a well circumscribed taxon. Furthermore, intraspecific variability was evidenced within P. pinophilum and P. funiculosum. The ex-type isolate of P. funiculosum produced a unique pattern. The method is sensitive, rapid and inexpensive and can be used for isolate identification of the biverticillate species. It is recommended particularly when many isolates have to be authentificated prior to analysis for phylogenetic assessment or population genetics.  相似文献   

4.
In order to explore the biochemical scope of ochratoxin A-producing penicillia, we screened 48 Penicillium verrucosum isolates for the production of secondary metabolites. Fungal metabolites were analyzed by high-pressure liquid or gas chromatography coupled to diode array detection or mass spectrometry. The following metabolites were identified: ochratoxins A and B, citrinin, verrucolones, verrucines, anacines, sclerotigenin, lumpidin, fumiquinazolines, alantrypinones, daldinin D, dipodazine, penigequinolines A and B, 2-pentanone, and 2-methyl-isoborneol. By use of average linking clustering based on binary (nonvolatile) metabolite data, the 48 isolates could be grouped into two large and clearly separated groups and a small outlying group of four non-ochratoxin-producing isolates. The largest group, containing 24 isolates, mainly originating from plant sources, included the type culture of P. verrucosum. These isolates produced ochratoxin A, verrucolones, citrinin, and verrucines and had a characteristic dark brown reverse color on yeast extract-sucrose agar medium. Almost all of a group of 20 isolates mainly originating from cheese and meat products had a pale cream reverse color on yeast extract-sucrose agar medium and produced ochratoxin A, verrucolones, anacines, and sclerotigenin. This group included the former type culture of P. nordicum. We also found that P. verrucosum isolates and three P. nordicum isolates incorporated phenylalanine into verrucine and lumpidin metabolites, a finding which could explain why those isolates produced relatively lower levels of ochratoxins than did most isolates of P. nordicum.  相似文献   

5.
Imwidthaya  Pankorn  Sekhon  A.S.  Mastro  T.D.  Garg  A.K.  Ambrosie  E. 《Mycopathologia》1997,138(2):51-55
Eight sera from culturally-proven cases of penicilliosis marneffei and their corresponding isolates were examined for circulating antibody(ies) and antigen, and exoantigens, respectively, using a microimmunodiffusion (MID) test. Two of the 8 sera produced strong precipitins (1-2) when reacted against control Penicillium marneffei antigen (5-week-old shaken cultures at 25 C) in the presence of control rabbit anti-P. marneffei serum. Five of the 8 sera produced a strong precipitin line when reacted against control hyperimmune serum to P. marneffei. These five sera, and one additional serum, which tested negative for antibody to P. marneffei, demonstrated the presence of antigen by reacting only against the anti-P. marneffei serum. Serological evaluations of the sera revealed that the MID test is capable of detecting antibody and antigen in AIDS patients having penicilliosis marneffei infections. Exoantigen analysis of the 8 P. marneffei isolates, which were previously identified using this conventional and time-consuming macro- and micro-morphological characteristics, showed the presence of 1 to 4 specific exoantigens in MID. With the exoantigen analysis, the identity of all of the isolates was confirmed as P. marneffei. Our studies indicated that the serological tests are useful for detecting circulating antibody and/or antigen in patients' sera, and that the exoantigen test is reliable for confirming the identity of P. marneffei cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The fungal microbiota of bloomy-rind cheeses, such as Camembert, forms a complex ecosystem that has not been well studied, and its monitoring during the ripening period remains a challenge. One limitation of enumerating yeasts and molds on traditional agar media is that hyphae are multicellular structures, and colonies on a petri dish rarely develop from single cells. In addition, fungi tend to rapidly invade agar surfaces, covering small yeast colonies and resulting in an underestimation of their number. In this study, we developed a real-time quantitative PCR (qPCR) method using TaqMan probes to quantify a mixed fungal community containing the most common dairy yeasts and molds: Penicillium camemberti, Geotrichum candidum, Debaryomyces hansenii, and Kluyveromyces lactis on soft-cheese model curds (SCMC). The qPCR method was optimized and validated on pure cultures and used to evaluate the growth dynamics of a ripening culture containing P. camemberti, G. candidum, and K. lactis on the surface of the SCMC during a 31-day ripening period. The results showed that P. camemberti and G. candidum quickly dominated the ecosystem, while K. lactis remained less abundant. When added to this ecosystem, D. hansenii completely inhibited the growth of K. lactis in addition to reducing the growth of the other fungi. This result was confirmed by the decrease in the mycelium biomass on SCMC. This study compares culture-dependent and qPCR methods to successfully quantify complex fungal microbiota on a model curd simulating Camembert-type cheese.  相似文献   

7.
The taxonomy of the asymmetric (predominantly terverticillate) penicillia is based on morphological differences that leave identification difficult. The application of physiological criteria facilitated the identification of the common asymmetric penicillia investigated. Changes in the placement of some strains of these penicillia made the connection to mycotoxin-producing ability clearer. The classical criterion of conidium color was deemphasized and replaced by the following criteria: (i) growth on nitrite-sucrose agar and (ii) growth and acid (and subsequent base) production on creatine-sucrose agar (containing bromocresol purple). Other criteria used or developed were: (iii) growth on sorbic acid plus benzoic acid agar (50 + 50 ppm, pH 3.8), (iv) growth on an agar containing 1,000 ppm propionic acid (pH 3.8), (v) growth on an agar containing 0.5% acetic acid, (vi) growth at 37 degrees C, (vii) growth rate on an agar containing 0.1% pentachloronitrobenzene, (viii) production of extracellular tricaproinase, and (ix) fasciculation on a medium containing 10 ppm botran (2,6-dichloro-4-nitroanilin). The pattern of extracellular metabolites after thin-layer chromatography was used as a chemotaxonomic criterion. The species investigated, the number of isolates investigated, and the toxins which some of these isolates produce were: Penicillium roqueforti (18) (patulin), P. citrinum (11) (citrinin), P. patulum (9) (patulin and griseofulvin), P. expansum (patulin and citrinin), P. hirsutum (13), P. brevicompactum (19), and P. chrysogenum (12). Widespread species of the P. cyclopium, P. viridicatum, and P. expansum series of Raper and Thom (A Manual of the Penicillia, 1949) were subdivided into four new groups: "P. crustosum pA" (29) (penitrem A), "P. melanochlorum" (29), "P. cyclopium p" (119) (penicillic acid and infrequently penitrem A), and "P. viridicatum o-c" (43) (ochratoxin A and citrinin). "P. viridicatum o-c" was separated from "P. cyclopium p" due to its ability to grow on nitrite as sole nitrogen source. The species and groups investigated were related to the new taxonomic classification of the genus Penicillium according to Pitt.  相似文献   

8.
F. LUND. 1996. Creatine sucrose dichloran agar (CREAD) was used as a selective medium for Penicillium commune and related species found in air samples in a cheese factory. Using growth and simple colony characters on CREAD together with detection of indole metabolites with a filter paper method, it was possible to identify all 22 P. commune isolates from a total of 43 Penicillium isolates. Penicillium commune numbers on CREAD were compared with those found on a general isolation medium, dichloran 18% glycerol agar.  相似文献   

9.
The benzodiazepine sclerotigenin (auranthine B) recently described as a metabolite of Penicillium sclerotigenum, has been isolated as the major metabolite from an isolate of P. commune. The structure of sclerotigenin was established by a single-crystal X-ray diffraction study and by NMR spectroscopy. UV-guided screening for benzodiazepine production by other penicillia revealed that sclerotigenin was also produced by isolates of P. clavigerum, P. lanosum, P. melanoconidium, P. sclerotigenum and P. verrucosum. Sclerotigenin was detected both intra- and extracellularly. Apparently, P. aurantiogriseum is the only auranthine producing species in genus Penicillium.  相似文献   

10.
In order to explore the biochemical scope of ochratoxin A-producing penicillia, we screened 48 Penicillium verrucosum isolates for the production of secondary metabolites. Fungal metabolites were analyzed by high-pressure liquid or gas chromatography coupled to diode array detection or mass spectrometry. The following metabolites were identified: ochratoxins A and B, citrinin, verrucolones, verrucines, anacines, sclerotigenin, lumpidin, fumiquinazolines, alantrypinones, daldinin D, dipodazine, penigequinolines A and B, 2-pentanone, and 2-methyl-isoborneol. By use of average linking clustering based on binary (nonvolatile) metabolite data, the 48 isolates could be grouped into two large and clearly separated groups and a small outlying group of four non-ochratoxin-producing isolates. The largest group, containing 24 isolates, mainly originating from plant sources, included the type culture of P. verrucosum. These isolates produced ochratoxin A, verrucolones, citrinin, and verrucines and had a characteristic dark brown reverse color on yeast extract-sucrose agar medium. Almost all of a group of 20 isolates mainly originating from cheese and meat products had a pale cream reverse color on yeast extract-sucrose agar medium and produced ochratoxin A, verrucolones, anacines, and sclerotigenin. This group included the former type culture of P. nordicum. We also found that P. verrucosum isolates and three P. nordicum isolates incorporated phenylalanine into verrucine and lumpidin metabolites, a finding which could explain why those isolates produced relatively lower levels of ochratoxins than did most isolates of P. nordicum.  相似文献   

11.
The taxonomy of the penicillia is unstable particularly in the important antibiotic and mycotoxin-producing subgenus Penicillium. There are difficulties relating identifications to mycotoxin production. Also, the validity of dual nomenclature for pleomorphic fungi is under discussion increasingly. Patulin is an important mycotoxin produced by various fungi and has strict limits in the European Union. The mycotoxin and/or the isoepoxydon dehydrogenase (IDH) gene of the metabolic pathway have been assessed in 318 strains predominately of subgenus Penicillium. These data were used to classify the isolates. Subgenus Penicillium contained most of the IDH and patulin positives. The species and varieties in subgenus Penicillium which were associated with patulin detection can be reduced to one name, viz. Penicillium Pen p+ (p = patulin). This has been extended to other mycotoxin producing penicillia to indicate the scope of the scheme. The classification will lead to the number of taxa being reduced, while avoiding species names and hence dual nomenclature. Culture independent analysis of environmental samples is mentioned. The scheme could be used with advantage for other fungi.  相似文献   

12.
Growth kinetics of Geotrichum candidum and Penicillium camemberti in submerged cultures under conditions of low aeration rate and uncontrolled pH were continuously recorded turbidimetrically. In these conditions the exponential growth phase was short, and ceased at a total biomass concentration of about 0.5 gl–1 for G. candidum and 0.8 gl–1 for P. candidum. The succeeding linear growth phase was also short, and its end corresponded to a biomass of 1.5 and 2.5 gl–1 for G. candidum and P. camemberti respectively. A fair growth was recorded for P. camemberti on peptone-lactate medium, but G. candidum required addition of trace elements. For neither of these species growth was stimulated by growth factors of yeast extract. In peptone-lactate medium, the final pH did not depend on supplementation: 8–8.4 was recorded for G. candidum and 8.7–8.8 for P. camemberti.  相似文献   

13.
Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.  相似文献   

14.
15.
Food-related Penicillium species ( n ep fy1 = rs 34) and Geotrichum candidum ( n = 11) grown on Czapek Dox and brie agar were tested for their ability to suppress growth of pathogenic bacteria. Ten out of 13 P. camemberti showed antagonistic activity while the other species did not interact significantly with the bacterial growth. The order of inhibition was: Gram-negative bacteria and Bacillus cereus > Listeria monocytogenes , Lactococcus sp. > Micrococcus sp. whereas Lactobacillus sp., Staphylococcus aureus and some Micrococcus sp. were unaffected. When Salmonella typhimurium was inoculated together with P. camemberti P25 in brie agar, bacterial growth was inhibited during the first 6 d of incubation whereafter growth started. The inhibition of L. monocytogenes was similar but less pronounced. The antimicrobial activity produced by P. camemberti P25 and L84 was enhanced with increasing amount of sucrose in the medium. The activity was increased at low pH and destroyed at pH above 8. It was detectable at 15°C but not at 37°C indicating that volatile metabolites might be involved. No significant accumulation of organic acids and no secondary metabolites such as mycotoxins were detected. HSGC-MS analysis indicated that acetaldehyde, benzaldehyde, 3-methylbutanal and 1-octen-3-ol were produced by P. camemberti during the period when inhibitory activity was observed. Pure acetaldehyde and benzaldehyde were shown to be inhibitory to L. monocytogenes and Salm. typhimurium when grown at 15°C and pH 5·5 and 7·0.  相似文献   

16.
Fungi are important in the manufacture of two types of cheese—blue-veined cheeses, and Camembert and Brie. Among the former are Roquefort, Gorgonzola and Stilton, dependent on the mold Penicillium roqueforti and the bacterium Streptococcus lactis. Camembert and Brie require Penicillium camemberti and lactic acid- producing streptococci; the mold Oospora lactis and the organism Bacterium linens may also play roles in their manufacture.  相似文献   

17.
The indole secondary metabolites chaetoglobosin C, cyclopiazonic acid, isofumigaclavine A and rugulovasine A and B produced by several Penicillium species growing on Czapek yeast autolysate agar were detected directly in the culture using filter paper wetted with Ehrlich reagent dissolved in ethanol. The filter paper was placed on the mycelial side of an agar plug and the metabolites were visualized as a violet zone on the paper within 10 min. It was shown that the combined characters of the violet reaction on filter paper and the ability to grow on creatine sucrose agar occurred in 5 out of 16 species of Penicillium examined. A few additional simple morphological and physiological criteria were then sufficient for identification of P. camemberti, P. commune, P. discolor, P. expansum and P. roqueforti var. roqueforti.  相似文献   

18.
本文报道青霉属一个新种,分离自赤豆,特点是分生孢子无色,命名为无色青霉(Penicillium incoloratum sp.nov.).模式和来自模式的活培养物都保存在中国科学院微生物研究所。  相似文献   

19.
Aims:  Genotypic and technological characterization of wild lactococci isolated from artisanal Manchego cheese during the ripening process for selection of suitable starter cultures.
Methods and Results:  A total of 114 isolates of lactococci were typed using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Sixteen distinct RAPD-PCR patterns, at a similarity level of 73%, were obtained. On the basis of species-specific PCR reaction, the isolates were assigned to the species Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris with L. lactis subsp. lactis being predominant at both dairies. Twenty-six isolates were technologically characterized to select those with the best properties. Most of them showed good technological properties although some could produce tyramine.
Conclusions:  The presence of coincident genotypes at both dairies has been demonstrated, which would suggest that they are well adapted to the Manchego cheese environment. Interesting differences were found in the technological characterization and the potential role of autochthonous lactococci strains as starter culture has been displayed.
Significance and Impact of the Study:  The great economic importance of Manchego cheese encouraged a deeper knowledge of its microbiota, to select strains with the best properties to use as starter cultures in industrial Manchego cheeses, preserving the autochthonous characteristics.  相似文献   

20.
Biogenic amine-forming microbial communities in cheese   总被引:1,自引:0,他引:1  
The aim of this study was to screen two cheese starter cultures and cheese-borne microbial communities with the potential to produce biogenic amines in cheese during ripening. Bacteria of the genera Enterococcus and Lactobacillus and coliform bacteria were isolated from Dutch-type semi-hard cheese at the beginning of the ripening period. Statistically significant counts of bacterial isolates were screened for the presence of specific DNA sequences coding for tyrosine decarboxylase (tyrDC) and histidine decarboxylase (hDC) enzymes. The PCR analysis of DNA from 14 Enterococcus and 3 Lactobacillus isolates confirmed the presence of the targetted DNA sequences. Simultaneously, 13 tyrDC- and 3 hDC-positive isolates were grown in decarboxylase screening medium and this was followed by HPLC analysis of the produced tyramine and histamine. Conventional and molecular taxonomic analyses of the above-mentioned isolates identified the following species: Enterococcus durans (7 strains), Enterococcus faecalis (3 strains), Enterococcus faecium (1 strain), Enterococcus casseliflavus (3 strains), Lactobacillus curvatus (1 strain), Lactobacillus lactis (1 strain) and Lactobacillus helveticus (1 strain). All of the above Enterococcus and two of the Lactobacillus strains originated from contaminating microbial communities. The L. helveticus strain, which was tyrosine decarboxylase-positive and exhibited tyramine production, originated from starter culture 1 used for cheese production. Comparison of partial tyrDC sequences of positive Enterococcus isolates revealed 89% sequence similarity, and that of hDC-positive Lactobacillus isolates revealed 99% sequence similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号