首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.— Most theoretical work on the evolution of senescence has assumed that all individuals within a population are equally susceptible to extrinsic sources of mortality. An influential qualitative prediction based on this assumption is Williams's hypothesis, which states that more rapid senescence is expected to evolve when the magnitude of such extrinsic mortality sources is increased. Much evidence suggests, however, that for many groups of organisms externally imposed mortality risk is a function of an organism's internal condition and hence susceptibility to such hazards. Here we use a model of antagonistic pleiotropy to investigate the consequences that such interactions (between environmental hazard and internal condition) can have for Williams's hypothesis. As with some previous theory examining nonin-teractive extrinsic mortality sources, we find that an increase in interactive extrinsic sources of mortality makes it less likely that an individual will survive from birth to any given age, weakening selection against physiological deterioration at all ages and thus favoring more rapid senescence. However, an increase in interactive mortality sources also typically strengthens selection against physiological deterioration at any age, given an individual has survived to that age, because it reduces the fitness of poor-condition individuals more than good-condition individuals. These opposing effects are not felt equally at all ages, with the latter predominating at early ages. The combined effects can therefore result in the novel prediction that an increase in interactive extrinsic mortality sources can select for slower senescent deterioration early in life but more rapid deterioration late in life.  相似文献   

2.
Abstract The evolutionary explanation of senescence proposes that selection against alleles with deleterious effects manifested only late in life is weak because most individuals die earlier for extrinsic reasons. This argument also applies to alleles whose deleterious effects are nongenetically transmitted from mother to progeny, that is, that affect the performance of progeny produced at late ages rather than of the aging individuals themselves. We studied the effect of maternal age on offspring viability (egg hatching success and larva-to-adult survival) in two sets of Drosophila melanogaster lines (HAM/LAM and YOUNG/OLD), originating from two long-term selection experiments. In each set, some lines (HAM and YOUNG, respectively) have been selected for early reproduction, whereas later reproduction was favored in their counterparts (LAM and OLD). In the HAM and LAM lines, both egg hatching success and larval viability declined with mother's age and did so with accelerating rates. The hatching success declined significantly faster with maternal age in HAM than in LAM lines, according to one of two statistical approaches used. Egg hatching success also declined with maternal age in YOUNG and OLD lines, with no difference between the selection regimes. However, the relationship between mother's age and offspring larva-to-adult viability differed significantly between these two selection regimes: a decline of larval viability with maternal age occurred in YOUNG lines but not in OLD lines. This suggests that the rate with which offspring viability declines with mother's age responded to selection for early versus late reproduction. We suggest broadening the evolutionary concept of senescence to include intrinsically caused declines in offspring quality with maternal age.  相似文献   

3.
Recent large scale studies of senescence in animals and humans have revealed mortality rates that levelled off at advanced ages. These empirical findings are now known to be inconsistent with evolutionary theories of senescence based on the Malthusian parameter as a measure of fitness. This article analyses the incidence of mortality plateaus in terms of directionality theory, a new class of models based on evolutionary entropy as a measure of fitness. We show that the intensity of selection, in the context of directionality theory, is a convex function of age, and we invoke this property to predict that in populations evolving under bounded growth constraints, evolutionarily stable mortality patterns will be described by rates which abate with age at extreme ages. The explanatory power of directionality theory, in contrast with the limitations of the Malthusian model, accords with the claim that evolutionary entropy, rather than the Malthusian parameter, constitutes the operationally valid measure of Darwinian fitness.  相似文献   

4.
The physiology of reproductive senescence in women is well understood, but the drivers of variation in senescence rates are less so. Evolutionary theory predicts that early-life investment in reproduction should be favoured by selection at the cost of reduced survival and faster reproductive senescence. We tested this hypothesis using data collected from preindustrial Finnish church records. Reproductive success increased up to age 25 and was relatively stable until a decline from age 41. Women with higher early-life fecundity (ELF; producing more children before age 25) subsequently had higher mortality risk, but high ELF was not associated with accelerated senescence in annual breeding success. However, women with higher ELF experienced faster senescence in offspring survival. Despite these apparent costs, ELF was under positive selection: individuals with higher ELF had higher lifetime reproductive success. These results are consistent with previous observations in both humans and wild vertebrates that more births and earlier onset of reproduction are associated with reduced survival, and with evolutionary theory predicting trade-offs between early reproduction and later-life survival. The results are particularly significant given recent increases in maternal ages in many societies and the potential consequences for offspring health and fitness.  相似文献   

5.
The antagonistic pleiotropy theory of senescence postulates genes or traits that have opposite effects on early-life and late-life performances. Because selection is generally weaker late in life, genes or traits that improve early-life performance but impair late-life performance should come to predominate. Variation in the strength of age-specific selection should then generate adaptive variation in senescence. We demonstrate this mechanism by comparing early and late breeders within a population of semelparous capital-breeding sockeye salmon (Oncorhynchus nerka). We show that early breeders (but not late breeders) are under strong selection for a long reproductive lifespan (RLS), which facilitates defence of their nests against disturbance by later females. Accordingly, early females invest less energy in egg production while reserving more for nest defence. Variation along this reproductive trade-off causes delayed or slower senescence in early females (average RLS of 26 days) than in late females (reproductive lifespan of 12 days). We use microsatellites to confirm that gene flow is sufficiently limited between early and late breeders to allow adaptive divergence in response to selection. Because reproductive trade-offs should be almost universal and selection acting on them should typically vary in time and space, the mechanism described herein may explain much of the natural variation in senescence.  相似文献   

6.
Natural populations host a wealth of genetic variation in longevity and age-specific schedules of reproduction. This variation provides critical information for inferring the evolutionary origin of senescence. Patterns of mutational effects on age-specific fecundity and survival provide additional insight to distinguish alternative models of senescence. In this study,P-elements bearing thewhite minigene were inserted at random into a common genetic background, generating lines ofD. melanogaster with single, stable transposon inserts. A series of 48 single-P-element lines revealed statistically significant heterogeneity in both longevity and fecundity. Longevity and early fecundity were only weakly positively correlated (r=0.286,P=0.0398). Both the pooled sample and 30 of the individual lines exhibited a leveling of age-specific mortality at advanced ages, in opposition to the classical demographic models. To the extent that these mutational effects are representative of naturally-occurring mutations in heterogeneous populations, this result presents a problem for the evolutionary theory of senescence. Natural selection is inefficient at removing deleterious mutations that are expressed only at late ages, and selection may not differentiate between mutations whose effects on longevity are post-reproductive. A leveling of the mortality rate would also be seen if mutations whose expression is delayed until very late simply do not occur. A simulation of mutation-selection balance among the 48P-element tagged lines shows that the mean longevity declines monotonically with increasing mutation rate, consistent with the mutation-accumulation model.  相似文献   

7.
The classic evolutionary theory of aging posits that senescence evolves because the weakening of selection with age allows mutations with late-acting deleterious effects to accumulate. Because extrinsic mortality is an important cause of weakening selection, the central prediction of the theory has been that higher extrinsic mortality should lead to the evolution of a higher rate of senescence. However, the validity of this prediction has been questioned, even to the extent of suggesting that it is not a prediction of the theory at all, primarily on the basis that changes in population growth rate will compensate for changes in extrinsic mortality. The implication is that empiricists have been using the wrong prediction to test the theory. This claim is misleading, however, because it does not apply on an evolutionary timescale, when population size must be roughly constant. With a constant population size, Hamilton’s fitness sensitivities show that extrinsic mortality determines the rate at which the strength of selection declines with age, and thus determines the rate of senescence. The central prediction has been confirmed in the few controlled experiments with model organisms that have been conducted, but clearly this is an area ripe for further investigation.  相似文献   

8.
In a previous theoretical study we investigated whether adaptive or non-adaptive processes are more important in the evolution of senescence. We built a model that combined both processes and found that mutation accumulation is important only at those ages where mortality has a negligible impact on fitness. This model, however, was limited to haploid organisms. Here we extend our model by introducing diploidy and sexual reproduction. We assume that only recessive (mutated) homozygotes experience detrimental effects. Our results corroborate our previous conclusions, confirming that life histories are largely determined by adaptive processes. We also found that the equilibrium frequencies of mutated alleles are at higher values than in haploid model, because mutations in heterozygotes are hidden for directional selection. Nevertheless, the equilibrium frequencies of recessive homozygotes that make mutations visible to selection are very similar to the equilibrium frequencies of these alleles in our haploid model. Diploidy and sexual reproduction with recombination slows down approaching selection-mutation balance.  相似文献   

9.
Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a "wall of death." Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence.  相似文献   

10.
Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.  相似文献   

11.
The origins of human ageing are to be found in the origins and evolution of senescence as a general feature in the life histories of higher animals. Ageing is an intriguing problem in evolutionary biology because a trait that limits the duration of life, including the fertile period, has a negative impact on Darwinian fitness. Current theory suggests that senescence occurs because the force of natural selection declines with age and because longevity is only acquired at some metabolic cost. In effect, organisms may trade late survival for enhanced reproductive investments in earlier life. The comparative study of ageing supports the general evolutionary theory and reveals that human senescence, while broadly similar to senescence in other mammalian species, has distinct features, such as menopause, that may derive from the interplay of biological and social evolution.  相似文献   

12.
We examined the influence of parental age on life history traits of their offspring in the lines of bean weevil that have evolved different rates of senescence. Measurements included preadult traits (egg size, embryonic developmental time, total preadult developmental time, preadult viability) and adult traits (body weight, total realized fecundity of females, first day of egg laying, early fecundity, late fecundity and longevity). The negative parental age effects were observed for all traits except for the early and total realized fecundity. We did not detect statistically significant line×parental age interactions for either preadult- or adult-survival, so offspring survival did not change with parental age after selection for early vs. late reproduction. It seems that selection acting on the quality of offspring produced by parents of different ages has not been responsible for the evolution of senescence in bean weevil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Any useful evolutionary theory of senescence must be able to explain variation within and among natural populations and species. This requires a careful characterization of age-specific mortality rates in nature as well as the intrinsic and extrinsic factors that influence these rates. We perform this task for two populations of semelparous Pacific salmon. During the breeding season, estimated daily mortality rates increased from 0 to 0.2-0.5 (depending on the year) over the course of several weeks. Early-arriving individuals had a later onset and/or a lower rate of senescence in each breeding season, consistent with adaptive expectations based on temporal variation in selection. Interannual variation in senescence was large, in part because of extrinsic factors (e.g., water temperature). Predation rates were higher in Pick Creek sockeye salmon (anadromous Oncorhynchus nerka) than in Meadow Creek kokanee (nonanadromous O. nerka), but in contrast to evolutionary theory, senescence was not more rapid in the former. Interannual variation may have obscured interpopulation divergence in senescence. Pacific salmon are a promising system for further studies on the physiological, evolutionary, and genetic bases of senescence. In particular, we encourage further research to disentangle the relative importance of adaptive and nonadaptive variation in senescence.  相似文献   

14.
Leips J  Gilligan P  Mackay TF 《Genetics》2006,172(3):1595-1605
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.  相似文献   

15.
It is widely believed (following the 1957 hypothesis of G. C. Williams) that greater rates of “extrinsic” (age- and condition-independent) mortality favor more rapid senescence. However, a recent analysis of mammalian life tables failed to find a significant correlation between minimum adult mortality rate and the rate of senescence. This article presents a simple theoretical analysis of how extrinsic mortality should affect the rate of senescence (i.e., the rate at which probability of mortality increases with age) under different evolutionary and population dynamical assumptions. If population dynamics are density independent, extrinsic mortality should not alter the senescence rate favored by natural selection. If population growth is density dependent and populations are stable, the effect of extrinsic mortality depends on the age specificity of the density dependence and on whether survival or reproduction (or both) are functions of density. It is possible that higher extrinsic mortality will increase the rate of senescence at all ages, decrease the rate at all ages, or increase it at some ages while decreasing it at others. Williams's hypothesis is most likely to be supported when density dependence acts primarily on fertility and does not differentially decrease the fertilities of older individuals. Patterns contrary to Williams's prediction are possible when density dependence acts primarily on the survival or fertility of later ages or when most variation in mortality rates is due to variation in nonextrinsic mortality.  相似文献   

16.
Torres R  Drummond H  Velando A 《PloS one》2011,6(11):e27245
Recent studies of wild populations provide compelling evidence that survival and reproduction decrease with age because of senescence, a decline in functional capacities at old ages. However, in the wild, little is known about effects of parental senescence on offspring quality. We used data from a 21-year study to examine the role of parental age on offspring probability of recruitment in a long-lived bird, the blue-footed booby (Sula nebouxii). Offspring probability of recruiting into the breeding population varied over the life of parents and effects age were similar in mothers and fathers. Offspring recruitment was high when parents were roughly 6-12 years old and low before and after then. Effects of parental age on offspring recruitment varied with lifespan (parental age at last reproduction) and previous breeding experience. Offspring recruitment from young and old parents with long reproductive lifespans was greater than that of offspring from parents with short lifespans at young and old ages. For parents with little previous breeding experience recruitment of offspring decreased with their hatch date, but experienced parents were no similarly affected. We found evidence of terminal effects on offspring recruitment in young parents but not in older parents, suggesting that senescence is more likely a gradual process of deterioration than a process of terminal illness. Failure to recruit probably reflects mortality during the first years after independence but also during the fledgling transition to full independence. Our results show effects of parental age and quality on offspring viability in a long-lived wild vertebrate and support the idea that wild populations are composed of individuals of different quality, and that this individual heterogeneity can influence the dynamics of age-structured populations.  相似文献   

17.
In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra) and extended lifespans (e.g., Bristlecone Pine). Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.  相似文献   

18.
Although the basic theories concerning evolution of senescence have been generally accepted for a half-century, interpretation of this paradigm has been constrained by an over-reliance on mortality as both the cause and the measure of senescence. Consideration of both survival and fecundity as components of reproductive value, and integration of sexual selection theory with senescence theory allows reconciliation of long-standing, as well as recent, discrepancies between data and theory. This approach demonstrates that sexual selection on males in polygynous mating systems can have significant effects on the evolution of senescence that could overshadow the selection effects of mortality rates among such animals.  相似文献   

19.
A long-term laboratory selection experiment has produced replicated populations of fruit flies that differ in mean life span by more than twofold. An analysis of age-specific mortality rates indicated that differences in mean life span have been achieved principally by evolution of patterns of senescence. These results provide empirical confirmation that senescence can be modified within species by appropriate forms of natural selection, which is a fundamental prediction of theories regarding the genetic basis and evolution of senescence. Mortality data were fit to a model that accounts for the leveling off of cohort mortality rates at older ages, but that does not necessarily imply that very old individuals cease to senesce.  相似文献   

20.
Age-specific mortality rates level off far below 100% at advanced ages in experimental populations of Drosophila melanogaster and other organisms. This observation is inconsistent with the equilibrium predictions of both the antagonistic pleiotropy and mutation accumulation models of senescence, which, under a wide variety of assumptions, predict a “wall” of mortality rates near 100% at postreproductive ages. Previous models of age-specific mortality patterns are discussed in light of recent demographic data concerning late-age mortality deceleration and age-specific properties of new mutations. The most recent theory (Mueller and Rose 1996) argues that existing evolutionary models can easily and robustly explain the demographic data. Here we discuss the sensitivity of that analysis to different types of mutational effects, and demonstrate that its conclusion is very sensitive to assumptions about mutations. A legitimate resolution of evolutionary theory and demographic data will require experimental observations on the age-specificity of mutational effects for new mutations and the degree to which mortality rates in adjacent ages are constrained to be similar (positive pleiotropy), as well as consideration of redundancy and heterogeneity models from demographic theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号