首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional pool size of electrons in the intersystem chainof the chloroplasts of maize was estimated to be about 25 perP700 by the redox change in P700 with single- and multiple-turnoverlights under far-red light in intact leaves. This is about twicethe pool size observed in C3 plants. Furthermore, the stromalpool size of electrons that can be donated to P700+ after actinicillumination was larger in maize leaves than in leaves of C3plants, giving a maximum value of 225 electrons per P700. Maizeleaves showed an increase in the yield of modulated Chl fluorescenceafter turning off of actinic light, which confirms the donationof electrons in the dark to the intersystem chain from the stromaldonors that accumulated during actinic illumination. We proposethat the mesophyll chloroplasts are responsible for a high levelof electron-donating activity to the intersystem chain fromstromal donors such as triose phosphates and malate with NADPHas an intermediate. The level of P700+ under strong far-redlight was decreased after actinic illumination, suggesting theoperation of an actinic light-triggered cyclic electron flowin chloroplasts of the bundle sheath cells. (Received August 14, 1992; Accepted October 13, 1992)  相似文献   

2.
Cells, of Synechococcus sp. PCC 7002 showed a low oxidationlevel of P700 under a far-red light at 6 W m–2 which inducednearly complete oxidation of P700 in spinach leaves, and a strongerfar-red light was required to observe the oxidation of P700.DCMU did not affect the level of P700+2 but 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneinduced the oxidation of P700 under far-red light, indicatingthat the low oxidation level of P700 was due to the donationof electrons to P700+2 from the cytosolic respiratory donorsthrough the intersystem chain at the plastoquinone pool. Theelectron transfer from the cytosolic donors to the intersystemchain was inhibited by HgCl2 but not by antimycin A. The reductionof P700+ in Synechococcus cells, after illumination by strongfar-red light was mostly accounted for by the electron flowto the inter system chain from the respiratory donors (t  相似文献   

3.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(3):437-439
The relative size of the pool of electrons accumulated in stroma reductants during actinic irradiation, which can be donated to P700+ via the intersystem chain, was estimated after short-term exposure of intact Zea mays leaves to elevated temperatures. When the temperature increased from 25 to 50 °C by 5 °C steps, the relative size of the stroma electron pool went through a maximum at around 30 °C, and decreased gradually thereafter.  相似文献   

4.
Electron donation to P700+ through plastoquinone in the intersystemchain from both respiratory substrates and the photoreductantsin PSI has been shown to be mediated by the NAD(P)H-dehydrogenasecomplex (NDH) in Synechocystis PCC 6803 cells [Mi et al. (1992)Plant Cell Physiol. 33: 1233]. To confirm the participationof NDH in the cyclic electron flow around PSI, the redox kineticsof P700 and Chi fluorescence were analyzed in cells rendereddeficient in respiratory substrates by dark starvation and inspheroplasts. Dark-starved cells showed a high steady-state level of P700+under far-red (FR) illumination and the plastoquinone pool wasin a highly oxidized state. An NDH-defective mutant consistentlyshowed a high level of P700 oxidation under FR before and afterthe dark starvation. Donation of electrons either from exogenousNADPH or from photoreduced NADPH+ to the intersystem chain viaplastoquinone was demonstrated using spheroplasts from wild-typecells, but not those from the NDH-defective mutant, as monitoredby following changes in the kinetics of Chi fluorescence andthe redox state of P700. The electron flow to PSI via plastoquinone,mediated by NADPH, was sensitive to rotenone, Hg2+ ions and2-thenoyltrifluoroacetone, inhibitors of mitochondrial NDH andsuccinate dehydrogenase, but not to antimycin A. The pool sizeof electrons that can be donated to P700+ from the cytosol throughthe intersystem chain increased with increasing duration ofillumination time by actinic light and was sensitive to rotenonein both wild-type cells and spheroplasts, but no such resultswere obtained in the NDH-defective mutant of Synechocystis 6803.The results support our previous conclusion that NDH is a mediatorof both respiratory electron flow and cyclic electron flow aroundPSI to the intersystem chain in the cyanobacterium Synechocystis. (Received August 20, 1993; Accepted November 22, 1993)  相似文献   

5.
Picosecond transient absorption changes, with a laser intensityas low as one photon absorbed per single reaction center, weremeasured with vitamin K1-depleted and P700-enriched particleswhich were obtained by ether treatment of spinach PS-I particles.When P700 was in the oxidized state, a bleaching that correspondedto about one-seventh of the ground state absorption was observedjust after a laser flash (0 picosecond delay). A major partof the bleaching decayed with a lifetime of about 35 picoseconds,which corresponds to the relaxation of the excited antenna chl-ato the ground state. By contrast, when P700 was in the reducedstate, the bleaching observed at a 0 ps delay was broader, especiallyon the longer wavelength side than the ground state absorption,probably because of the generation of the excited state of P700.About one half of the bleaching decayed within 35 ps and theremaining half, which had a broad spectrum and a peak around682 nm, was conserved up to 2 ns. This long-lived bleachingprobes no picosecond decay of the radical pair P700+-A0because electrons were not transferred from A01 to A1 in vitaminK1-depleted particles. After addition of vitamin K3, an analogof vitamin K1, to the reduced particles, the bleaching around685 nm decayed successively with an apparent rate of about 150picosecond, while the bleaching around 700 nm was conservedfor up to 2 nanosecond. Thus, the bleaching remaining at 2 nsresembled the difference spectrum of P700, suggesting a subnanosecondquenching of A01 by the externally added vitamin K3. These observationssupport a recent proposal that the secondary electron acceptorA1, in photosystem I, is vitamin K1. 3Permanent address: Optics Laboratory, Korea Standards ResearchInstitute, Daedok Science Town, Chungnam 300-31, Korea. (Received October 24, 1988; Accepted April 14, 1989)  相似文献   

6.
By treating a FA/FB-depleted P700-Fx core from SynechococcusPCC 6301 with diethylether, most of the phylloquinone was removedwithout loss of P700. The 1 ms decay of P700+ in the originalcore was replaced by the 25 ns decay, which was interpretedas the backreaction occurring in a P700+  相似文献   

7.
The redox kinetics of P700 induced by far-red light and a pulseof strong white light in wild type cells were compared withthose in NAD(P)H dehydrogenase (NDH)-defective mutants of thecyanobacterium Synechocystis PCC 6803. The wild type cells showedthe electron donation from the respiratory donor and the photoreductantgenerated in PS I to P700+ through the plastoquinone, whichis mediated by a Hg2+-sensitive enzyme. The NDH-defective mutantcells, however, did not show the electron transfer to P700+through the plastoquinone from both the photoreductant in PSI and cytosolic electron donors using pyndine nucleotides asan intermediate. Thus, NDH appears to be the site of main entryof electrons into the plastoquinone pool in the NAD(P)H-mediatedcyclic electron flow and the respiratory electron flow in Synechocystis. (Received August 31, 1992; Accepted October 1, 1992)  相似文献   

8.
P700 was enriched relative to antenna pigments by treating thethylakoid membranes from thermophilic cyanobacterium (Synechococcussp.) with diethylether. The total Chi a/P700 ratio of the membraneswas 147 but decreased to 13 after the treatment with ether whichhad been 70% saturated with water. Vitamin K1 and carotenoidswere completely removed by this treatment. The low chlorophylla to P700 ratio was retained in photosystem I reaction-centercomplexes purified from the ether-extracted membranes with TritonX-100. The midpoint potential of P700 was considerably loweredby the ether treatment of the thylakoid membranes but was partiallyreversed by the further treatment of the extracted membraneswith Triton X-100. Photo-oxidation of P700 in the purified complexeswas extremely slow under continuous illumination, indicatingthat there is no significant leakage of electrons from the primaryelectron acceptor to other bound acceptors or O2. The photooxidationof P700 was appreciably accerelated on addition of vitamin K3(or K1). (Received June 23, 1988; Accepted November 25, 1988)  相似文献   

9.
Under anaerobic atmosphere where the gas phase was simply replacedby N2, photo-inhibition of PS I of isolated spinach chloroplastswas insignificant. However, when dithionite was included inthe irradiation mixture, severe photoinhibition of the NADP+and the MV photo-reduction occurred. Neither P700 determinedby continuous illumination-induced difference spectroscopy,Fe-S centers determined by EPR under cryogenic temperatures,nor vitamin K-l determined by HPLC analysis were significantlydecreased under these photoinhibition conditions. Although photobleachingof antenna chlorophylls occurred to more or less extent, NADP+photoreduction activities were markedly depressed even undersaturating actinic light. The maximal amplitude of the flashinduced absorbance changes of P700 in ms range decreased almostin parallel with the loss of NADP+ photoreduction activity.These results indicate that although the Fe-S centers of thephotoinhibited chloroplasts were reducible by continuous illumination,to almost the same extents as that of the control chloroplasts,the efficiency of reduction by each flash was much lower thanthat of the control chloroplasts. The site of photoinhibitionin PS I under extremely reducing conditions is between A0 andFe-S X. (Received July 28, 1988; Accepted October 31, 1988)  相似文献   

10.
Leaves of three C4 plants, Setaria italica, Pennisetum typhoides,and Amaranthus paniculatus possessed five- to ten-fold higheractivities of a (Na+-K+)-dependent ATPase than those of twoC3 plants, Oryza sativa and Rumex vesicarius. Na+-K+ ATPasefrom leaves of Amarathus exhibited an optimal pH of 7?5 andan optimal temperature of 35 ?C. It required 40 mM K+ and 80mM Na+ for maximal activity. Ouabain partially inhibited (Na+-K+)-dependentATPase activity in leaves of C4 plants. Ouabain also blockedthe movement of label from initially formed C4 acids into endproducts in leaves of only C4 plants, Setaria and Amaranthusbut not in a C3 plant, Rumex. We propose that Na+-K+ ATPasemay mediate transfer of energy during active transport of C4acids from mesophyll into the bundle sheath.  相似文献   

11.
Lyophilized photosystem I particles from spinach were treatedwith diethyl ether that contained various organic solvents withdifferent dielectric constants. More pigments were extractedas the dielectric constant of the solvent added to ether increased.The reaction-center chlorophylldimer, P700, was more resistantto extraction than the rest of the chlorophyll. Particles thatcontained only 6 chlorophylls in addition to P700 and the primaryelectron acceptor (A0), in a single reaction-center unit, wereprepared by extraction with a mixture of ether and acetaldehyde.A distinct shoulder at 695 nm due to P700 or at 686 nm due toP700+ was observed in the absorption spectra of the reducedor oxidized particles, respectively, even at room temperature.No secondary acceptor phylloquinone remained in the particles.Stable charge separation was restored upon the addition of 2-amino-anthraquinone,even though the particles had the lowest molar ratio of chlorophyllto P700 of any reported particles. (Received February 20, 1995; Accepted May 8, 1995)  相似文献   

12.
The effect of elevated temperature on electron flow to plastoquinone pool and to PSI from sources alternative to PSII was studied in barley (Hordeum vulgare L.) and maize (Zea mays L.) leaves. Alternative electron flow was characterized by measuring variable fluorescence of chlorophyll and absorption changes at 830 nm that reflect redox changes of P700, the primary electron donor of PSI. The treatment of leaves with elevated temperature resulted in a transient increase in variable fluorescence after cessation of actinic light. This increase was absent in leaves treated with methyl viologen (MV). The kinetics of P700+ reduction in barley and maize leaves treated with DCMU and MV exhibited two exponential components. The rate of both components markedly increased with temperature of the heat pretreatment of leaves when the reduction of P700+ was measured after short (1 s) illumination of leaves. The acceleration of both kinetic components of P700+ reduction by high-temperature treatment was much less pronounced when P700+ reduction rate was measured after illumination of leaves for 1 min. Since the treatment of leaves with DCMU and MV inhibited both the electron flow to PSI from PSII and ferredoxin-dependent cycling of electrons around PSI, the accelerated reduction of P700+ indicated that high temperature treatment activated electron flow to PSII from reductants localized in the chloroplast stroma. We conclude that the lesser extent of activation of this process by elevated temperature after prolonged illumination of heat-inhibited leaves is caused by depletion of the pool stromal reductants in light due to photoinduced electron transfer from these reductants to oxygen.  相似文献   

13.
Light-enhanced active pyruvate uptake into mesophyll chloroplastsof C4 plants was reported to be mimicked by either of the twotypes of cation jump: H+-jump in maize and phylogenically relatedspecies (H+-type) and Na+-jump in all the other C4 species tested(Na+-type) [Aoki, N., Ohnishi, J. and Kanai, R. (1992) PlantCell Physiol. 33: 805]. In this study, medium and stromal pH was monitored in the suspensionof C4 mesophyll chloroplasts. Medium alkalization lasting for5 to 10 seconds after pyruvate addition was detected by a pHelectrode and observed only in the light and only in mesophyllchloroplasts from H+-type species, Zea mays L. and Coix lacryma-jobiL., but not in those from Na+-type species Panicum miliaceumL., Setaria italica (L.) Beauv. and Panicum maximum Jacq. Theinitial rate of H+ consumption showed good correlation with[14C]pyruvate uptake measured by silicone oil filtering centrifugation,both being inhibited by N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-l,3-diazole to the same degree. The ratio of the rate of H+ uptaketo that of pyruvate uptake was always about 1. Pyruvate-inducedacidification of the stroma was observed in maize mesophyllchloroplasts. These results show one to one cotransport of H+and pyruvate anion into mesophyll chloroplasts of H+-type C4species in the light. (Received January 5, 1994; Accepted May 6, 1994)  相似文献   

14.
Bundle sheath chloroplasts of NADP-malic enzyme (NADP-ME) type C4 species have a high demand for ATP, while being deficient in linear electron flow and oxidation of water by photosystem II (PSII). To evaluate electron donors to photosystem I (PSI) and possible pathways of cyclic electron flow (CEF1) in isolated bundle sheath strands of maize (Zea mays L.), an NADP-ME species, light-induced redox kinetics of the reaction center chlorophyll of PSI (P700) were followed under aerobic conditions. Donors of electrons to CEF1 are needed to compensate for electrons lost from the cycle. When stromal electron donors to CEF1 are generated during pre-illumination with actinic light (AL), they retard the subsequent rate of oxidation of P700 by far-red light. Ascorbate was more effective than malate in generating stromal electron donors by AL. The generation of stromal donors by ascorbate was inhibited by DCMU, showing ascorbate donates electrons to the oxidizing side of PSII. The inhibitors of NADPH dehydrogenase (NDH), amytal and rotenone, accelerated the oxidation rate of P700 by far-red light after AL, indicating donation of electrons to the intersystem from stromal donors via NDH. These inhibitors, however, did not affect the steady-state level of P700+ under AL, which represents a balance of input and output of electrons in P700. In contrast, antimycin A, the inhibitor of the ferredoxin-plastoquinone reductase-dependent CEF1, substantially lowered the level of P700+ under AL. Thus, the primary pathway of ATP generation by CEF1 may be through ferredoxin-plastoquinone, while function of CEF1 via NDH may be restricted by low levels of ferredoxin-NADP reductase. NDH may contribute to redox poising of CEF1, or function to generate ATP in linear electron flow to O2 via PSI, utilizing NADPH generated from malate by chloroplastic NADP-ME.  相似文献   

15.
The mechanism of light-dependent active transport of pyruvatein C4 mesophyll chloroplasts has not been clarified, particularlyin Na+-type C4 species, in which the pyruvate uptake into mesophyllchloroplasts is enhanced by illumination or by making a Na+gradient (Na+-jump) across the envelope in the dark. We re-investigatedhere the effect of Na+ on the active transport of pyruvate inmesophyll chloroplasts of Panicum miliaceum, a Na+-type C4 species,by comparing the rate of pyruvate uptake at various externalpHs under four conditions; in the light and dark together with/withoutNa+-jump: (1) At neutral pH, the rate of pyruvate uptake inthe dark was enhanced by Na+-jump but scarcely by illumination.(2) While the enhancement effect by Na+-jump was independentof external pH, that by illumination increased greatly at pHover 7.4, and the effects of light and Na+ at the alkaline pHwere synergistic. (3) The light-enhanced pyruvate uptake wasrelated to stromal alkalization induced by illumination. Infact, pyruvate uptake was induced by H+-jump in the medium frompH 8.0 to 6.7. (4) Stromal pH was lowered by the addition ofK+-pyruvate and more by Na+-pyruvate into the medium at pH 7.8in the light. (5) However, the pH and ATP levels in the stromawere not affected by Na+-jump. Thus, we discussed possibility that besides pyruvate/Na+ cotransportat neutral pH in the medium, pyruvate/H+ cotransport enhancedby the presence of Na+ operates in mesophyll chloroplasts ofNa+-type C4 species at alkaline medium. 1Present address: Biological Resources Division, Japan InternationalResearch Center for Agricultural Sciences (JIRCAS), Ministryof Agriculture, Forestry and Fisheries, 2-1 Ohwashi, Tsukuba,305 Japan  相似文献   

16.
A procedure is described which permits determination of the absolute absorption cross-section of a photosynthetic unit from the kinetics of reaction center photo-oxidation under weak, continuous actinic illumination. The method was first tested on a simple model compound of known absorption cross-section. We then applied the technique to absorption cross-section and functional antenna size measurements in photosystem I (PS I). A kinetic model is presented that can be used to fit P700 photo-oxidation measurements and extract the effective photochemical rate constant. The procedure is shown to properly correct for sample scattering and for the presence of heterogeneous absorbers (pigments not functionally coupled to P700). The relevance of these corrections to comparisons of antenna size using techniques that measure relative absorption cross-sections is discussed. Measurements on pea thylakoids in the presence and absence of 5 mM MgCl2 show a 45% increase in PS I absorption cross-section in unstacked thylakoids. Analysis of detergent-isolated native PS I preparations (200 chlorophyll a+b/P700) clearly indicate that the preparation contains a broad distribution of antenna sizes. Finally, we confirm that Chlamydomonas reinhardtii strain LM3-A4d contains a PS I core antenna complex which binds only 60 chlorophyll a/P700, about half the functional size of the wild type complex. Limitations associated with calculation of functional antenna size from cross-section measurements are also discussed.Abbreviations PS photosystem - PS I-200 detergent-isolated photosystem I preparation containing about 200 Chl a+b/P700 - A xxx absorbance at xxx nm - absolute absorption cross-section - I a rate of light absorption - In o incident actinic light intensity - p quantum yield of photochemistry - k eff effective rate constant for P700 photo-oxidation measured under conditions of limiting actinic intensity - k r rate constant for P700+ reduction  相似文献   

17.
Mesophyll chloroplasts were isolated from leaves of a Na+-requiringNAD-malic enzyme type, dicotyledonous C4 plant, Amaranthus tricolorL. The chloroplasts converted pyruvate to phosphoenolpyruvateunder illumination, and the conversion was stimulated by Na+.This observation may explain the requirement for Na+ of someC4 plants. 2 Present address: Institute for Life Science Research, NihonNohyaku Co., Ltd., Kawachi-Nagano, Osaka, 586 Japan  相似文献   

18.
The size of EPR signal I and its decay half-life were measuredon chloroplasts isolated from primary bean leaves after illuminationof 7 d old dark-grown seedlings. The results indicate that the ratio of P700/total chlorophylldecreased approximately 2-fold only between the 6th and 24thhour of illumination. The relative size of the signal increasedwith increasing light intensity up to 360 W m–2 in allstages of greening studied. Addition of HgCl2 (ImM) caused anincrease in the magnitude of the signal, especially at lowerlight intensities. Treatment of isolated chloroplasts with DCMU(20 µM) did not have any effect on the intensity of thesignal at the early stages of greening, that is 6 or 12 h ofillumination, but it caused a slight enhancement after 24 or48 h of Illumination. The higher intensity used for the signalproduction the smaller the enhancement observed. The addition of HgCl2 caused an increase in decay half-lifeof the signal 20-fold or 35-fold after 6 h or 48 h of greening,respectively. In DCMU-treated chloroplasts, an enhancing effectbecomes visible after 12 h of greening and subsequently it graduallyincreased. The data obtained were interpreted in terms of an alterationin efficiency of the re-reduction of P700+ under different conditionsand different stages of greening.  相似文献   

19.
The reactions of isolated intact spinach chloroplasts at saturatinglight and CO2 to changes in steady-state electron flow werefollowed at the various stages of photosynthesis. Alterationsin the rate of electron flow were induced by the addition ofoxaloacetate (OAA), nitrite or methyl viologen (MV). Two typesof effect can be distinguished: (1) When a small fraction ofthe electrons produced are accepted by OAA or nitrite (up to20% of the electrons produced in the light), the activationstate of the NADP+-dependent malate dehydrogenase (NADP-MDH)was strongly decreased, whereas qP and the rate of O2-productionwere increased. qN, the stromal metabolite pools and the [14C]-CO2-fixationrate were only marginally influenced. (2) Higher amounts ofnitrite or MV decreased O2 production and strongly inhibited[14C]CO2 fixation. This treatment further increased the ATP/ADPratio, but had little effect on the NADPH + H+/NADP+ ratio.The stromal concentrations of 3PGA, DHAP and FBP, and the ratesof 3PGA and DHAP export were drastically changed. In particular,the DHAP/3PGA ratio increased, and the rate of 3PGA export wasdecreased by minor changes in the rate of electron flow. Additionof high amounts of nitrite or MV, but not of OAA decreased theactivation states of NADP-MDH and fructose 1,6-bisphosphatase(FBPase), while the activation states of NADP+-dependent glyceraldehyde3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK)remained unchanged under all conditions. (Received February 10, 1997; Accepted September 2, 1997)  相似文献   

20.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochromef of NO2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome.f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号