首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Termination of translation in higher organisms is a GTP-dependent process. However, in the structure of the single polypeptide chain release factor known so far (eRF1) there are no GTP binding motifs. Moreover, in prokaryotes, a GTP binding protein, RF3, stimulates translation termination. From these observations we proposed that a second eRF should exist, conferring GTP dependence for translation termination. Here, we have shown that the newly sequenced GTP binding Sup35-like protein from Xenopus laevis, termed eRF3, exhibits in vitro three important functional properties: (i) although being inactive as an eRF on its own, it greatly stimulates eRF1 activity in the presence of GTP and low concentrations of stop codons, resembling the properties of prokaryotic RF3; (ii) it binds and probably hydrolyses GTP; and (iii) it binds to eRF1. The structure of the C-domain of the X.laevis eRF3 protein is highly conserved with other Sup35-like proteins, as was also shown earlier for the eRF1 protein family. From these and our previous data, we propose that yeast Sup45 and Sup35 proteins belonging to eRF1 and eRF3 protein families respectively are also yeast termination factors. The absence of structural resemblance of eRF1 and eRF3 to prokaryotic RF1/2 and RF3 respectively, may point to the different evolutionary origin of the translation termination machinery in eukaryotes and prokaryotes. It is proposed that a quaternary complex composed of eRF1, eRF3, GTP and a stop codon of the mRNA is involved in termination of polypeptide synthesis in ribosomes.  相似文献   

2.
Mutations in genes of omnipotent nonsense suppressors SUP35 and SUP45 in yeast Saccharomyces cerevisiae encoding translation termination factors eRF3 and eRF1, respectively, and prionization of the eRF3 protein may lead to the suppression of some frameshift mutations (CPC mutations). Partial inactivation of the translation termination factor eRF3 was studied in strains with unstable genetically modified prions and also in transgenic yeast S. cerevisiae strains with the substitution of the indigenous SUP35 gene for its homolog from Pichia methanolica or for a recombinant S. cerevisiae SUP35 gene. It was shown that this partial inactivation leads not only to nonsense suppression, but also to suppression of the frameshift lys2-90 mutation. Possible reasons for the correlation between nonsense suppression and suppression of the CPC lys2-90 mutation and mechanisms responsible for the suppression of CPC mutations during inactivation of translation termination factors are discussed.  相似文献   

3.
Termination of translation in eukaryotes is governed by two polypeptide chain release factors, eRF1 and eRF3 on the ribosome. eRF1 promotes stop-codon-dependent hydrolysis of peptidyl-tRNA, and eRF3 interacts with eRF1 and stimulates eRF1 activity in the presence of GTP. Here, we have demonstrated that eRF3 is a GTP-binding protein endowed with a negligible, if any, intrinsic GTPase activity that is profoundly stimulated by the joint action of eRF1 and the ribosome. Separately, neither eRF1 nor the ribosome display this effect. Thus, eRF3 functions as a GTPase in the quaternary complex with ribosome, eRF1, and GTP. From the in vitro uncoupling of the peptidyl-tRNA and GTP hydrolyses achieved in this work, we conclude that in ribosomes both hydrolytic reactions are mediated by the formation of the ternary eRF1-eRF3-GTP complex. eRF1 and the ribosome form a composite GTPase-activating protein (GAP) as described for other G proteins. A dual role for the revealed GTPase complex is proposed: in " GTP state," it controls the positioning of eRF1 toward stop codon and peptidyl-tRNA, whereas in "GDP state," it promotes release of eRFs from the ribosome. The initiation, elongation, and termination steps of protein synthesis seem to be similar with respect to GTPase cycles.  相似文献   

4.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. eRF1 recognizes the stop codon and promotes nascent peptide chain release, while eRF3 facilitates this peptide release in a GTP-dependent manner. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay. Despite extensive investigation, the complete understanding of eRF3 function have been hampered by the lack of specific anti-eRF3 monoclonal antibodies (Mabs). The purpose of the study was production of recombinant eRF3a/GSPT1, development of anti-eRF3a/GSPT1 Mabs and their utilization for eRF3a/GSPT1 sub-cellular localization. Plasmid encoding C-terminal part of human GSPT1/eRF3a was constructed. Purified protein, which was predominantly present in the inclusion bodies, was used for the development of Mabs. Characterization of the regions recognized by Mabs using GSPT1/eRF3a mutants and its visualization in the 3D space suggested that Mabs recognize different epitopes. Consistent with its function in translational termination, immunostaining of the cells with developed Mabs revealed that the endogenous GSPT1/eRF3a localized in endoplasmic reticulum. Taking into account the important role of eRF3 for the fundamental research one can suggests that developed Mabs have great prospective to be used as a research reagent in a wide range of applications.  相似文献   

5.
GTP is essential for eukaryotic translation termination, where the release factor 3 (eRF3) complexed with eRF1 is involved as the guanine nucleotide-binding protein. In addition, eRF3 regulates the termination-coupled events, eRF3 interacts with poly(A)-binding protein (Pab1) and the surveillance factor Upf1 to mediate normal and nonsense-mediated mRNA decay. However, the roles of GTP binding to eRF3 in these processes remain largely unknown. Here, we showed in yeast that GTP is essentially required for the association of eRF3 with eRF1, but not with Pab1 and Upf1. A mutation in the GTP-binding motifs of eRF3 impairs the eRF1-binding ability without altering the Pab1- or Upf1-binding activity. Interestingly, the mutation causes not only a defect in translation termination but also delay of normal and nonsense-mediated mRNA decay, suggesting that GTP/eRF3-dependent termination exerts its influence on the subsequent mRNA degradation. The termination reaction itself is not sufficient, but eRF3 is essential for triggering mRNA decay. Thus, eRF3 is a key mediator that transduces termination signal to mRNA decay.  相似文献   

6.
Eukaryotic translation termination employs two protein factors, eRF1 and eRF3. Proteins of the eRF3 family each consist of three domains. The N and M domains vary in different species, while the C domains are highly homologous. The MC domains of Homo sapiens eRF3a (hGSPT I), Xenopus laevis eRF3 (XSup35), and Mus musculus eRF3a (mGSPTI) and eRF3b (mGSPT2) were found to compensate for the sup35-21(ts) temperature-sensitive mutation and lethal disruption of the SUP35 gene in yeast Saccharomyces cerevisiae. At the same time, strains containing the MC domains of the eRF3 proteins from different species differed in growth rate and the efficiency of translation termination.  相似文献   

7.

Background  

Termination of translation in eukaryotes requires two release factors, eRF1, which recognizes all three nonsense codons and facilitates release of the nascent polypeptide chain, and eRF3 stimulating translation termination in a GTP-depended manner. eRF3 from different organisms possess a highly conservative C region (eRF3C), which is responsible for the function in translation termination, and almost always contain the N-terminal extension, which is inessential and vary both in structure and length. In the yeast Saccharomyces cerevisiae the N-terminal region of eRF3 is responsible for conversion of this protein into the aggregated and functionally inactive prion form.  相似文献   

8.
Translation termination in eukaryotes requires a codon-specific (class-I) release factor, eRF1, and a GTP/GDP-dependent (class-II) release factor, eRF3. The model of "molecular mimicry between release factors and tRNA" predicts that eRF1 mimics tRNA to read the stop codon and that eRF3 mimics elongation factor EF-Tu to bring eRF1 to the A site of the ribosome for termination of protein synthesis. In this study, we set up three systems, in vitro affinity binding, a yeast two-hybrid system, and in vitro competition assay, to determine the eRF3-binding site of eRF1 using the fission yeast Schizosaccharomyces pombe proteins and creating systematic deletions in eRF1. The in vitro affinity binding experiments demonstrated that the predicted tRNA-mimicry truncation of eRF1 (Sup45) forms a stable complex with eRF3 (Sup35). All three test systems revealed that the most critical binding site is located at the C-terminal region of eRF1, which is conserved among eukaryotic eRF1s and rich in acidic amino acids. To our surprise, however, the C-terminal deletion eRF1 seems to be sufficient for cell viability in spite of the severe defect in eRF3 binding when expressed in a temperature-sensitive sup45 mutant of the budding yeast, Saccharomyces cerevisiae. These results cannot be accounted for by the simple "eRF3-EF-Tu mimicry" model, but may provide new insight into the eRF3 function for translation termination in eukaryotes.  相似文献   

9.
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3, which interact to form a heterodimer that mediates termination at all three stop codons. By C-terminal deletion analysis of eRF1 from the yeast Saccharomyces cerevisiae, we show that the extreme C-terminus of this 437-amino-acid protein defines a functionally important domain for translation termination. A strain encoding eRF1 lacking the C-terminal 32 amino acids is not viable, whereas deletion of the C-terminal 19 amino acids is viable but shows a termination defect in vivo causing an enhancement of nonsense suppression. Using a combination of two-hybrid analysis and in vitro binding studies, we demonstrate that deletions encompassing the C-terminus of eRF1 cause a significant reduction in eRF3 binding to eRF1. All of the C-terminally truncated eRF1 still bind the ribosome, suggesting that the C-terminus does not constitute a ribosome-binding domain and eRF1 does not need to form a stable complex with eRF3 in order to bind the ribosome. These data, together with previously published data, suggest that the region between amino acids 411 and 418 of yeast eRF1 defines an essential functional domain that is part of the major site of interaction with eRF3. However, a stable eRF1:eRF3 complex does not have to be formed to maintain viability or efficient translation termination. Alignment of the seven known eukaryotic eRF1 sequences indicates that a highly conserved motif, GFGGIGG/A is present within the region of the C-terminus, although our deletion studies suggest that it is sequences C-terminal to this region that are functionally important.  相似文献   

10.
In eukaryotic ribosomes, termination of translation is triggered by class 1 polypeptide release factor, eRF1. In organisms with a universal code, eRF1 responds to three stop codons, whereas, in ciliates with variant codes, only one or two codon(s) remain(s) as stop signals. By mutagenesis of the Y-C-F minidomain of the N domain, we converted an omnipotent human eRF1 recognizing all three stop codons into a unipotent 'ciliate-like' UGA-only eRF1. The conserved Cys127 located in the Y-C-F minidomain plays a critical role in stop codon recognition. The UGA-only response has also been achieved by concomitant substitutions of four other amino acids located at the Y-C-F and NIKS minidomains of eRF1. We suggest that for eRF1 the stop codon decoding is of a non-linear (non-protein-anticodon) type and explores a combination of positive and negative determinants. We assume that stop codon recognition is profoundly different by eukaryotic and prokaryotic class 1 RFs.  相似文献   

11.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

12.
Mutations in genes of omnipotent nonsense suppressors SUP35 and SUP45 in yeast Saccharomyces cerevisiae encoding translation termination factors eRF3 and eRF1, respectively, and prionization of the eRF3 protein may lead to the suppression of some frameshift mutations (CPC mutations). Partial inactivation of the translation termination factor eRF3 was studied in strains with unstable genetically modified prions and also in transgenic yeast S. cerevisiae strains with the substitution of the indigenous SUP35 gene for its homolog from Pichia methanolica or for a recombinant S. cerevisiae SUP35gene. It was shown that this partial inactivation leads not only to nonsense suppression, but also to suppression of the frameshift lys2-90 mutation. Possible reasons for the correlation between nonsense suppression and suppression of the CPC lys2-90 mutation and mechanisms responsible for the suppression of CPC mutations during inactivation of translation termination factors are discussed.  相似文献   

13.
Eukaryotic translation termination employs two protein factors, eRF1 and eRF3. Proteins of the eRF3 family each consist of three domains. The N and M domains vary in different species, while the C domains are highly homologous. The MC domains of Homo sapiens eRF3a (hGSPT1), Xenopus laevis eRF3 (XSup35), and Mus musculus eRF3a (mGSPT1) and eRF3b (mGSPT2) were found to compensate for the sup35-21(ts) temperature-sensitive mutation and lethal disruption of the SUP35 gene in yeast Saccharomyces cerevisiae. At the same time, strains containing the MC domains of the eRF3 proteins from different species differed in growth rate and the efficiency of translation termination.  相似文献   

14.
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.  相似文献   

15.
以八肋游仆虫第二类肽链释放因子eRF3基因为模板,用PCR的方法获得eRF3的C端(eRF3C)和C端缺失76个氨基酸的突变体eRF3Ct片段,并构建重组表达质粒pGEX-6p-1-eRF3C和pGEX-6p-1-eRF3Ct,转入大肠杆菌BL21(DE3)中获得了可溶性表达。通过Glutathione Sepharose 4B柱亲和层析纯化,重组蛋白GST-eRF3C和GST-eRF3Ct获得纯化。Western blotting分析表明获得的蛋白为目的蛋白。PreScission酶切割后得到eRF3C和eRF3Ct蛋白。体外pull down分析显示eRF3C和eRF3Ct均能与八肋游仆虫第一类释放因子eRF1a相互作用,这表明八肋游仆虫eRF3 C端的76个氨基酸对于释放因子eRF1a的结合不是必需的。  相似文献   

16.
Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.  相似文献   

17.
By a number of criteria, we have demonstrated that the translation termination factor eRF1 (eukaryotic release factor 1) associates with protein phosphatase 2A (PP2A). Trimeric PP2A1 was purified from rabbit skeletal muscle using an affinity purification step. In addition to the 36 kDa catalytic subunit (PP2Ac) and established regulatory subunits of 65 kDa (PR65) and 55 kDa (PR55), purified preparations contained two proteins with apparent Mrs of 54 and 55 kDa. Protein microsequencing revealed that the 55 kDa component is a novel protein, whereas the 54 kDa protein was identified as eRF1, a protein that functions in translational termination as a polypeptide chain release factor. Using the yeast two-hybrid system, human eRF1 was shown to interact specifically with PP2Ac, but not with the PR65 or PR55 subunits. By deletion analysis, the binding domains were found to be located within the 50 N-terminal amino acids of PP2Ac, and between amino acid residues 338 and 381 in the C-terminal part of human eRF1. This association also occurs in vivo, since PP2A can be co-immunoprecipitated with eRF1 from mammalian cells. We observed a significant increase in the amount of PP2A associated with the polysomes when eRF1 was transiently expressed in COS1 cells, and eRF1 immunoprecipitated from those fractions contained associated PP2A. Since we did not observe any dramatic effects of PP2A on the polypeptide chain release activity of eRF1 (or vice versa), we postulate that eRF1 also functions to recruit PP2A into polysomes, thus bringing the phosphatase into contact with putative targets among the components of the translational apparatus.  相似文献   

18.
The polypeptide release factor (eRF1) gene was cloned from rabbit and its overexpression and purification system was established in parallel with that of the eRF1 gene of Tetrahymena thermophila that has been cloned recently in this laboratory. The rabbit eRF1 (Ra-eRF1) is composed of 437 amino acids and is completely identical to human eRF1 though 3% distinct in the nucleotide sequence. This is in sharp contrast to Tetrahymena eRF1 (Tt-eRF1) that is only 57% identical to human eRF1. The recombinant Ra-eRF1 was marked with a histidine tag, overexpressed, and purified to homogeneity by two-step chromatography using Ni-NTA-agarose and Mono Q columns. In contrast to Ra-eRF1, Tt-eRF1 formed aggregates upon overexpression in Escherichia coli, hence it was purified under denaturing conditions, and used to raise rabbit antibody. The resulting anti-Tt-eRF1 antibody proved useful for examining conditions for soluble Tt-eRF1 in test cells. Finally, a soluble Tt-eRF1 fraction was purified from Saccharomyces cerevisiae transformed with the Tt-eRF1 expression plasmid by three steps of affinity and anion exchange chromatography. The cloned Ra-eRF1 gene complemented a temperature-sensitive allele in the eRF1 gene, sup45 (ts), of S. cerevisiae, though the complementation activity was significantly impaired by the histidine tag, whereas Tt-eRF1 failed to complement the sup45 (ts) allele.  相似文献   

19.
The ubiquitous tripeptide Gly-Gly-Gln in class 1 polypeptide release factors triggers polypeptide release on ribosomes. The Gln residue in both bacterial and yeast release factors is N5-methylated, despite their distinct evolutionary origin. Methylation of eRF1 in yeast is performed by the heterodimeric methyltransferase (MTase) Mtq2p/Trm112p, and requires eRF3 and GTP. Homologues of yeast Mtq2p and Trm112p are found in man, annotated as an N6-DNA-methyltransferase and of unknown function. Here we show that the human proteins methylate human and yeast eRF1.eRF3.GTP in vitro, and that the MTase catalytic subunit can complement the growth defect of yeast strains deleted for mtq2.  相似文献   

20.
Amplification of macronuclear DNA of the ciliate Euplotes octocarinatus revealed the presence of two genes encoding putative polypeptide release factors (RFs) of the codon specific class-I type. They are named eRF1a and eRF1b, respectively. cDNA amplification revealed that both eRF1 genes are expressed. Determination of their copy numbers showed that they are similarly amplified to a level of about 27,000. The deduced protein sequences of the two genes are 57 and 58% identical with human eRF1 and 79% identical to each other. The gene encoding eRF1b possesses three in-frame UGA codons. This codon is known to encode cysteine in Euplotes; only UAA and UAG are used as stop codons in this organism. The primary structure of the two release factors is analyzed and compared with the primary structure of other eukaryotic release factors including the one of Tetrahymena thermophila which uses only UGA as a stop codon. eRF1a and eRF1b of Euplotes as well as eRF1 of Tetrahymena differ from human eRF1 and other class-I release factors of eukaryotes in a domain recently proposed to be responsible for codon recognition. Based on the changes which we observe in this region and the differential use of the stop codons in these two ciliates we predict the amino acids participating in stop codon recognition in eRF1 release factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号