首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both LIM15/DMC1 and RAD51 are thought to be essential for meiosis in which homologous chromosomes pair and recombine. The primary purpose of the present study was to investigate the homotypic and heterotypic interactions among their terminal domains. We prepared cDNAs and recombinant proteins of the full-length, N-terminal, and the C-terminal domains of LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) from the basidiomycete Coprinus cinereus. In both two-hybrid assay in vivo and pull-down assay in vitro, either CoLim15 or CoRad51 interacted homotypically between the C-terminal domains, respectively, but no heterotypic interaction was observed between CoLim15 and CoRad51. The N-terminal domain of CoLim15 bound to ssDNA and dsDNA, while the C-terminal domain of CoRad51 appeared to interact weakly with ssDNA. Based on these results, the interaction among the strand-exchange proteins and meiosis was discussed.  相似文献   

2.
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Rad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic characterization of its biochemical activity. The protein has a weak DNA-dependent ATPase activity and binds both single-strand DNA (ssDNA) and double-strand DNA. Electrophoretic mobility shift assays suggest that DNA binding by Dmc1 is cooperative. Dmc1 renatures linearized plasmid DNA with first order reaction kinetics and without requiring added nucleotide cofactor. In addition, Dmc1 catalyzes strand assimilation of ssDNA oligonucleotides into homologous supercoiled duplex DNA in a reaction promoted by ATP or the non-hydrolyzable ATP analogue AMP-PNP.  相似文献   

3.
In our previous study, we identified four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, in mouse FM3A cells (Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., and Yamada, M. (1984) Biochemistry 23, 529-533). The DNA-dependent ATPase C1 has been purified and characterized in detail. A divalent cation and a polynucleotide cofactor were required for the ATPase activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Almost no ATPase activity was observed with S1 nuclease-treated native DNA. ATPase C1 hydrolyzed ATP only among the ribo- and deoxyribonucleoside triphosphates tested, and this fact distinguished ATPase C1 from ATPases B, C2, and C3, because the latter enzymes are capable of hydrolyzing both ATP and dATP. The purified DNA-dependent ATPase C1 fraction was shown to have a DNA helicase activity that was dependent on hydrolysis of ATP. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.2 S on glycerol gradient centrifugation. Both activities showed similar preferences for nucleoside 5'-triphosphates and similar requirements for divalent cations. The DNA helicase activity was inhibited by the addition of single-stranded DNAs that served as cofactor for the ATPase activity. The efficiency of a single-stranded DNA to inhibit DNA helicase activity correlated well with the capacity of the DNA to serve as cofactor for DNA-dependent ATPase activity. The helicase was shown to migrate along the DNA strand in the 5' to 3' direction, which is the same direction of migration of the mouse DNA helicase B (Seki, M., Enomoto, T., Yanagisawa, J., Hanaoka, F., and Ui, M. (1988) Biochemistry 27, 1766-1771).  相似文献   

4.
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.  相似文献   

5.
6.
Dmc1 is specifically required for homologous recombination during meiosis. Here we report that the calcium ion enabled Dmc1 from budding yeast to form regular helical filaments on single-stranded DNA (ssDNA) and activate its strand assimilation activity. Relative to magnesium, calcium increased the affinity of Dmc1 for ATP and but reduces its DNA-dependent ATPase activity. These effects, together with previous studies of other RecA-like recombinases, support the view that ATP binding to Dmc1 protomers is required for functional filament structure. The helical pitch of the Saccharomyces cerevisiae Dmc1-ssDNA helical filament was estimated to be 13.4 +/- 2.5 nm. Analysis of apparently "complete" Dmc1-ssDNA filaments indicated a stoichiometry of 24 +/- 2 nucleotides per turn of the Dmc1 helix. This finding suggests that the number or protomers per helical turn and/or the number of nucleotides bound per Dmc1 protomer differs from that reported previously for Rad51 and RecA filaments. Our data support the view that the active form of Dmc1 protein is a helical filament rather than a ring. We speculate that Ca(2+) plays a significant role in regulating meiotic recombination.  相似文献   

7.
8.
Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II was studied in the absence and presence of DNA, and in the absence and presence of inhibitor ICRF-193. The results indicate that purified Top2-(1-409), a fragment containing the NH(2)-terminal 409 amino acids of the yeast enzyme, is predominantly monomeric, with a low level of ATPase owing to weak association of two monomers to form a catalytically active dimer. The ATPase activity of Top2-(1-409) is independent of DNA in a buffer containing 100 mM NaCl, in which intact yeast DNA topoisomerase II exhibits robust DNA-dependent ATPase and DNA transport activities. Purified Top2-(1-660), a fragment containing the NH(2)-terminal 660 amino acid of the yeast enzyme, appears to be dimeric in the absence or presence of DNA, and the ATPase activity of the protein is significantly stimulated by DNA. These results are consistent with a model in which binding of an intact DNA topoisomerase II to DNA places the various subfragments of the enzyme in a way that makes the intramolecular dimerization of the ATPase domains more favorable. We believe that this alignment of subfragments is mainly achieved through the binding of the enzyme to the DNA segment within which the enzyme makes transient breaks. The ATPase activity of Top2-(1-409) is inhibited by ICRF-193, suggesting that the bisdioxopiperazine class of DNA topoisomerase II inhibitors directly interacts with the paired ATPase domains of the enzyme.  相似文献   

9.
hRAD51 lacks cooperative DNA-dependent ATPase activity and appears to function with 5-10-fold less Mg2+ compared to RecA. We have further explored the effect of Mg2+ on adenosine nucleotide binding, ATPase, and DNA strand exchange activities. hRAD51 was saturated with the poorly hydrolyzable analog of ATP, ATPgammaS, at approximately 0.08 mM Mg2+. In contrast, > 0.5 mM Mg2+ was required to saturate hRAD51 with ADP. We found ADP to be a significantly less effective competitive inhibitor of the hRAD51 ATPase at low Mg2+ concentrations (0.08 mM). Mg2+ did not appear to affect the ability of ATPgammaS to competitively inhibit the hRAD51 ATPase. Low Mg2+ (0.08-0.12 mM) enhanced the steady-state ATPase of hRAD51 while higher Mg2+ concentration (> 0.3 mM) was inhibitory. At low Mg2+, hRAD51 appeared capable of nearly complete hydrolysis of available ATP, suggesting a lack of ADP product inhibition. There was a strong correlation between the amount of Mg2+ required for stable ADP binding and the inhibition of hRad51 strand exchange activity. Simultaneous inclusion of exogenous ATP and chelation of Mg2+ with EDTA significantly enhanced ADP-->ATP exchange by hRAD51. These studies are consistent with the hypothesis that Mg2+ influences the discrimination and release of ADP, which may sequentially impose an important regulatory step in the hRAD51 ATPase cycle.  相似文献   

10.
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.  相似文献   

11.
Qian X  He Y  Luo Y 《Biochemistry》2007,46(20):5855-5863
RecA-like strand exchange proteins, which include closely related archaeal Rad51/RadA and eukaryal Rad51 and DMC1, play a key role in DNA repair by forming helical nucleoprotein filaments which promote a hallmark strand exchange reaction between homologous DNA substrates. Our recent crystallographic studies on a RadA recombinase from Methanococcus voltae (MvRadA) have unexpectedly revealed a secondary magnesium at the subunit interface approximately 11 A from the primary one coordinated by ATP and the canonical P-loop. The DNA-dependent ATPase activity of MvRadA appears to be dependent on the concentration of free Mg2+, while the strand exchange activity does not. We also made site-directed mutagenesis at the Mg2+-liganding residue Asp-246. The mutant proteins exhibited approximately 20-fold reduced ATPase activity but normal strand exchange activity. Structurally, the main chain carbonyl of the conserved catalytic residue Glu-151 is hydrogen bonded with one of the magnesium-liganding water molecules. Changes in the secondary magnesium site may therefore induce conformational changes around this catalytic glutamate and affect the ATPase activity without significantly altering the stability of the extended recombinase filament. Asp-246 is somewhat conserved among archaeal and eukaryal homologues, implying some homologues may share this allosteric site for ATPase function.  相似文献   

12.
Three mutants producing thermosensitive DNA-dependent Adenosine triphosphatase (ATPase) I were screened from a collection of temperature-sensitive mutants of Escherichia coli K12. ATPase I purified to near homogeneity from one of the mutants (JE11000) possesses both thermosensitive DNA-dependent ATPase and DNA helicase activities. We have shown that ATPase I is encoded by the uvrD gene as first suggested by Oeda et al. (1982): (i) the thermosensitive ATPase I mutation present in JE11040 lies in or very close to the uvrD gene, (ii) ATPase I activity is absent in uvrD210, uvrD156, and uvrD252 mutants. Thus the thermosensitive mutations correspond to new uvrD mutations. However, the mutation present in JE11040 confers neither UV sensitivity nor mutator phenotype at high temperature. Evidence is presented that the mutant ATPase I is stabilized in vivo at 42 degrees C.  相似文献   

13.
Structural isomerism and chirality of N-monosubstituted protoporphyrins   总被引:4,自引:0,他引:4  
One form of DNA-dependent ATPase (DNA-dependent ATPase B) has been purified from FM3A cells. In this report, we describe the association of DNA polymerase α activity with DNA-dependent ATPase B through a series of purification steps and the final separation of the two enzymes by glycerol gradient centrifugation operated at a low salt concentration.  相似文献   

14.
The secretory pathway Ca(2+) ATPase (SPCA) provides the Golgi apparatus with a Ca(2+) supply essential for Ca(2+)-dependent enzymes involved in the post-translational modification of proteins in transit through the secretory pathway. Ca(2+) in the Golgi apparatus is also agonist-releasable and plays a role in hormone-induced Ca(2+) transients. Although the Ca(2+) ATPase inhibitors thapsigargin is more selective for the sarcoplasmic-endoplasmic reticulum Ca(2+) ATPase (SERCA) than for SPCA, no inhibitor has been characterised that selectively inhibits SPCA. A number of inhibitors were assessed for their selectivity to the human SPCA1d compared to the more ubiquitous human SERCA2b. Each isoform was over-expressed in COS-7 cells and the Ca(2+)-dependent ATPase activity measured in their microsomal membranes. Both bis(2-hydroxy-3-tert-butyl-5-methyl-phenyl)methane(bis-phenol) and 2-aminoethoxydiphenylborate (2-APB) selectively inhibited SPCA1d (with IC(50) values of 0.13μM and 0.18mM, respectively), which were of 62- and 8.3-fold greater potency than the values for hSERCA2b (IC(50) values; 8.1μM and 1.5mM, respectively). Other inhibitors tested such as bis-phenol-A, tetrabromobisphenol-A and trifluoperazine inhibited both Ca(2+) ATPases similarly. Furthermore, bis-phenol was able to mobilize Ca(2+) in cells that had been pre-treated with thapsigargin. Therefore we conclude that given the potency and selectivity of bis-phenol it may prove a valuable tool in further understanding the role of SPCA in cellular processes.  相似文献   

15.
PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase.   总被引:23,自引:0,他引:23  
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins in response to DNA damage that activates the base excision repair machinery. Poly(ADP-ribose) polymerase which we will now call PARP-1, has been the only known enzyme of this type for over 30 years. Here, we describe a cDNA encoding a 62-kDa protein that shares considerable homology with the catalytic domain of PARP-1 and also contains a basic DNA-binding domain. We propose to call this enzyme poly(ADP-ribose) polymerase 2 (PARP-2). The PARP-2 gene maps to chromosome 14C1 and 14q11.2 in mouse and human, respectively. Purified recombinant mouse PARP-2 is a damaged DNA-binding protein in vitro and catalyzes the formation of poly(ADP-ribose) polymers in a DNA-dependent manner. PARP-2 displays automodification properties similar to PARP-1. The protein is localized in the nucleus in vivo and may account for the residual poly(ADP-ribose) synthesis observed in PARP-1-deficient cells, treated with alkylating agents or hydrogen peroxide.  相似文献   

16.
A pathogen-inducible oxygenase in tobacco leaves and a homologous enzyme from Arabidopsis were recently characterized (Sanz, A., Moreno, J. I., and Castresana, C. (1998) Plant Cell 10, 1523-1537). Linolenic acid incubated at 23 degrees C with preparations containing the recombinant enzymes underwent alpha-oxidation with the formation of a chain-shortened aldehyde, i.e., 8(Z),11(Z), 14(Z)-heptadecatrienal (83%), an alpha-hydroxy acid, 2(R)-hydroxy-9(Z),12(Z),15(Z)-octadecatrienoic acid (15%), and a chain-shortened fatty acid, 8(Z),11(Z),14(Z)-heptadecatrienoic acid (2%). When incubations were performed at 0 degrees C, 2(R)-hydroperoxy-9(Z),12(Z),15(Z)-octadecatrienoic acid was obtained as the main product. An intermediary role of 2(R)-hydroperoxy-9(Z), 12(Z),15(Z)-octadecatrienoic acid in alpha-oxidation was demonstrated by re-incubation experiments, in which the hydroperoxide was converted into the same alpha-oxidation products as those formed from linolenic acid. 2(R)-Hydroperoxy-9(Z),12(Z), 15(Z)-octadecatrienoic acid was chemically unstable and had a half-life time in buffer of about 30 min at 23 degrees C. Extracts of cells expressing the recombinant oxygenases accelerated breakdown of the hydroperoxide (half-life time, about 3 min at 23 degrees C), however, this was not attributable to the recombinant enzymes since the same rate of hydroperoxide degradation was observed in the presence of control cells not expressing the enzymes. No significant discrimination between enantiomers was observed in the degradation of 2(R,S)-hydroperoxy-9(Z)-octadecenoic acid in the presence of recombinant oxygenases. A previously studied system for alpha-oxidation in cucumber was re-examined using the newly developed techniques and was found to catalyze the same conversions as those observed with the recombinant enzymes, i.e. enzymatic alpha-dioxygenation of fatty acids into 2(R)-hydroperoxides and a first order, non-stereoselective degradation of hydroperoxides into alpha-oxidation products. It was concluded that the recombinant enzymes from tobacco and Arabidopsis were both alpha-dioxygenases, and that members of this new class of enzymes catalyze the first step of alpha-oxidation in plant tissue.  相似文献   

17.
M Seki  T Enomoto  F Hanaoka  M Yamada 《Biochemistry》1987,26(10):2924-2928
We have detected at least four forms of DNA-dependent ATPase in mouse FM3A cell extracts [Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., & Yamada, M. (1984) Biochemistry 23, 529-533]. The purified fraction of one of the four forms, ATPase B, has been shown to have DNA helicase activity by using a DNA substrate which permits the detection of limited unwinding of the helix. The DNA substrate consists of single-stranded circular fd DNA and the hexadecamer complementary to the fd DNA, which bears an oligo(dT) tail at the 3' terminus. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.5 S on glycerol gradient centrifugation. The helicase required a divalent cation for activity (Mg2+ congruent to Mn2+ greater than Ca2+). The optimal concentrations of these divalent cations were 5 mM. The requirement of divalent cations of the DNA helicase activity was very similar to that for the DNA-dependent ATPase activity of ATPase B. The helicase activity was absolutely dependent on the presence of a nucleoside triphosphate. ATP was the most effective cofactor among the ribo- and deoxyribonucleoside triphosphates tested, and considerable levels of helicase activity were observed with other ribo- and deoxyribonucleoside triphosphates. The efficiency of a nucleoside triphosphate to serve as cofactor for the helicase activity correlated with the capacity of the nucleotide to serve as substrate for the DNA-dependent ATPase activity. The nonhydrolyzable ATP analogues such as adenosine 5'-O-(3-thiotriphosphate) were not effective for the helicase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Alanine aminotransferase (ALT) is a key enzyme for gluconeogenesis as well as a widely used serum marker for liver injury. We have identified two ALT isoenzymes, ALT1 and ALT2, which are encoded by separate genes. In this study, we described the expression, purification and initial characterization of human ALT1 and ALT2 proteins in High-five insect cells. Human ALT1 and ALT2 were expressed as His-tagged fusion proteins by recombinant baculovirus in insect cells and purified into homogeneity in one step by using immobilized Ni2+-affinity chromatography. Tag-free ALT1 and ALT2 were obtained by cleavage of enterokinase digestion and used for initial characterization of the enzymes. The specific ALT activity of purified fusion or His-tag-removed ALT1 was about 15-fold higher than that of ALT2 and their enzymatic activities decreased quickly at 37 °C and −20 °C, but were well preserved at −80 °C. Nevertheless, the ALT1 and ALT2 activities remained stable in a buffer containing 25% glycerol. The pH profile was similar between hALT1 and hALT2 in that both enzymes remained fully active between pH 6.5 and 8.0. The purified ALT recombinant proteins can not only be used as a reference protein standard for the ALT assay in clinical chemistry, but also will be useful for understanding the biochemical and biological significance of the isoenzymes and for developing ALT isoform-specific assays for clinical or preclinical diagnostic use.  相似文献   

19.
ATP-dependent and independent functions of Rad54 in genome maintenance   总被引:1,自引:0,他引:1  
Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54's ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54's ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non-DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号