首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract. The transit times of Chinese hamster ovary cells through the phases of their cell cycle were measured using dual parameter flow cytometry to measure DNA content and the presence of monoclonal antibodies to bromodeoxyuridine. Up to four separate populations can be accurately measured: unlabelled cells in G2+ M; labelled cells that have not yet divided; labelled cells that have already divided; and the unlabelled cells that were originally in G1 plus the cells that were originally in G2+ M and have since divided. The fractions of cells in these populations can be easily followed in time and the usual kinetic properties can be estimated from these fractions, or combinations thereof, including the times through G1, S, G2+ M and the cycle time. We present equations for analysing this type of data and comment on which equations are most appropriate for measuring specific kinetic properties of the cells.  相似文献   

2.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

3.
We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.  相似文献   

4.
Protein synthesis during photoinduced, synchronous progression of the cell cycle in single-celled protonemata of the fern Adiantum capillus-veneris was studied by tracer techniques. Nuclei of the protonemata were labelled with 3H-thymidine during spore germination so that the amount of 3H incorporated into the TCA-insoluble fraction of the cells could be used as a measure of the cell number in each sample. The rate of the incorporation of 14C-amino acids into TCA-insoluble materials was not significantly varied at different stages of the cell cycle or by treatment with blue light. Extracts of cells labelled with 35S-methionine at various times after the transfer from red light condition (G0) to darkness (G1 to S) were analyzed by two-dimensional gel electrophoresis. At least 3 of about 200 spots showed significant changes in intensity on fluorograms. Spot A (molecular weight 20,000, isoelectric point 6.3) was detectable only in early G1, whereas spot B (molecular weight 19,500, isoelectric point 6.3) was found only in the late G1 and S phases. When the cells were exposed to blue light before the dark incubation, the times of disappearance of spot A and appearance of spot B were advanced depending upon the progression of the cell cycle but not upon the clock time.  相似文献   

5.
Xie DX  Yao J  Zhang P  Li XL  Feng YD  Wu JH  Tao DD  Hu JB  Gong JP 《Cell proliferation》2008,41(2):265-278
Abstract.   Objectives : Based on studies of unicellular organisms or cultured mammalian cells, the generally accepted model of cell-cycle regulation has been developed in which sequential (scheduled) expression of cyclins D, E, A and B and activation of Cdk2 and Cdk1 takes place. It is assumed that the same model is applicable both in vivo and in vitro. Materials and methods : In the present study, we compared proliferating marrow cells freshly isolated from healthy individuals with proliferating lymphocytes in cultures. Results : We demonstrate that during progression of freshly collected human bone marrow cells through G1, S and G2/M, only Cdk1 combined with cyclins A and B1 was distinctly present and active, and its activity gradually increased. In contrast, in vitro growing mitogen-stimulated lymphocytes had perfectly scheduled sequential expression of all four cyclins and Cdk1 and Cdk2 activities. Conclusion : Our findings demonstrate that the pattern of cyclin expression and Cdk activity in bone marrow in vivo is distinctly different from the one observed for normal cells in vitro . Because proliferating bone marrow cells are predominantly expanding populations of committed progenitors, it is likely that during the expansion phase their cell-cycle progression is pre-programmed, being driven solely by Cdk1 combined either with cyclin A or with cyclin B1. Expansion of progenitor cells thus may not require the early steps of cell-cycle regulation, associated with triggering progression by availability of growth factors and mitogens.  相似文献   

6.
Abstract. Chinese hamster ovary cells were seeded in the absence or presence of the polyamine synthesis inhibitor 2-difluoromethylornithine (DFMO). At 14 days after seeding, the cells were labelled for 15–120 min with the thymidine analogue bromo-deoxyuridine (BrdUrd) and they were then fixed directly after the labelling period. In addition, cells were labelled for 30 min and they were then allowed to progress in BrdUrd-free medium during a defined post-labelling time before fixation. An indirect immunofluorescence technique, using the monoclonal BrdUrd antibody and the intercalating stochiometric DNA stain, propidium iodide, was applied to enable quantification of cellular BrdUrd and DNA contents, respectively, by flow cytometry (FCM). By comparing the mean DNA content of BrdUrd-labelled cells to the mean DNA contents of G1 and G2 cells, a relative measure of the position of the BrdUrd-labelled cells was obtained (relative movement). Relative movement data, obtained from control and DFMO-treated cells fixed directly after BrdUrd labelling, indicated that DFMO-treated cells entered S phase at a normal rate, while their progression through S phase was impaired. DNA histograms of BrdUrd-labelled control cells fixed directly after labelling showed that most cells were found in early and late S phase, while DNA histograms of BrdUrd-labelled DFMO-treated cells showed that most cells were in early S phase, indicating a delayed progression through S phase. Analysis of relative movement of cells that were allowed to progress in BrdUrd-free medium after labelling showed that DFMO treatment resulted in a significant lengthening of the DNA synthesis time. Labelling index was significantly higher in DFMO-treated, growth-inhibited cells than in early plateau phase control cells indicating an S phase accumulation in the former cells.  相似文献   

7.
Abstract.   Objectives : This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G2/M phases and consecutive cell survival. Materials and methods : Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. Results : By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G2 phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G2 accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly ( P <  0.01) increased the fraction of radiation-induced G2 arrested cells 30–56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by γ-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. Conclusions : These results indicate that separase has additional targets involved in regulation of G2 to M progression after DNA damage. Prolonged G2 phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.  相似文献   

8.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

9.
Prostate cancer is one of the leading causes of death among men in the USA.
Objective:  In this study, we investigated the role of atypical protein kinase C-iota (PKC-ι) in androgen-independent prostate DU-145 carcinoma cells compared to transformed non-malignant prostate RWPE-1 cells.
Materials and methods:  Western blotting and immunoprecipitations demonstrated that PKC-ι is associated with cyclin-dependent kinase activating kinase (CAK/Cdk7) in RWPE-1 cells, but not in DU-145 cells.
Results:  Treatment of prostate RWPE-1 cells with PKC-ι silencing RNA (siRNA) decreased cell viability, cell-cycle accumulation at G2/M phase, and phosphorylation of Cdk7 and Cdk2. In addition, PKC-ι siRNA treatment caused less phosphorylation of Bad at ser-155, ser-136, and greater Bad/Bcl-xL heterodimerization, leading to apoptosis. In DU-145 cells, PKC-ι was anti-apoptotic and was required for cell survival. Treatment with PKC-ι siRNA blocked increase in cell number, and inhibited G1/S transition by accumulation of cells in G0/G1 phase. In addition to cell-cycle arrest, both RWPE-1 and DU-145 cells underwent apoptosis due to mitochondrial dysfunction and apoptosis cascades, such as release of cytochrome c, activation of caspase-7, and poly (ADP-ribose) polymerase (PARP) cleavage.
Conclusion:  Our results suggest that PKC-ι is required for cell survival in both transformed non-malignant prostate RWPE-1 cells and androgen-independent malignant prostate DU-145 cells, whereas suppressing PKC-ι lead to apoptosis in DU-145 prostate cells.  相似文献   

10.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

11.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

12.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

13.
Mitotic activity and nuclear DNA synthesis in tomato ( Lycopersicon esculentum Mill., cv. King plus) flowers targeted for abortion under unfavorable light conditions are completely stopped 6 days after macroscopic appearance of the inflorescence. Ovular cells are arrested at the G1 (80%) and G2 (20%) stages of the cell cycle. Exogenous applications of a mixture of N6-benzyladenine (BA) and gibberellins A4+7 (GA) directly on the inflorescence may prevent its failure. Nuclear DNA synthesis and mitoses resume in ovules of the flower 16 to 20 h after the BA+GA treatment. When applied alone, BA and GA are able to mimic the effect of the mixture upon the progression of ovular cells through their cycle. Sporogenesis processes are also set in motion by the exogenous plant growth regulators. The mechanism of action of cytokinins and gibberellins in the control of floral development is discussed.  相似文献   

14.
ABSTRACT. We developed a method to study the DNA synthetic cycles of Entamoeba histolytica and Entamoeba invadens by flow cytometry (FCM) based on a preparative procedure to reduce both high levels of natural fluorescence and non-specific adsorption of fluorochromes. We modeled G1, S, and G2 phases as a series of overlapping Gaussian curves. Both E. histolytica and E. invadens displayed G1, S, and G2 proportions that are consistent with eukaryotic cell populations in exponential or stationary growth phase. Exponential phase E. histolytica populations contained a hypodiploid subset with a mass of about 20% less than the diploid value which we estimate by FCM to be 24 × 10-14 g DNA/cell. Exponential phase E. invadens populations contained a hypodiploid subset with a mass of about 6% less than the diploid value which we estimate by FCM to be 30 × 10-14 g DNA/cell.  相似文献   

15.
Abstract. Glucose is normally required as the energy source and for the proliferation of neoplastic cells. For Ehrlich ascites tumour cells, kept under glucose-free culture conditions, this requirement was alleviated by uridine, indicating that the supply of ribose is obligatory for sustaining growth capacity.
In a 96-hr culture experiment with mouse-derived cells, the increase in cell number from cultures supplemented with 5 mM uridine was 50–70%, whilst lactate production was 5% that of controls. An increase in the number of multinucleate cells was observed from cell-smears; DNA histograms indicated the presence of cells with a DNA content higher than 4c and an increased portion of cells in G2 phase. For precise determination of changes in cell cycle distribution on transfer of cells from glucose-supplemented to glucose-free conditions, the progression of phase-accumulated cells (by centrifugal elutriation) was monitored by DNA distribution analysis; G2 cells continued the cycle at a rate comparable to controls but were delayed, in the following cycle, predominantly in S and G2 phases. This was also observed with G1 cells from a G1-accumulated fraction in the first cycle.
The addition of glucose to cells kept for some hours in glucose-free, uridine-supplemented medium resulted in an immediate increase in mitotic index (amplification by the colcemid method).
The results are interpreted and support our concept that the delivery of compounds, necessary for normal growth, i.e. hexoses for glycoproteins and glycolipids, are limited as a consequence of the 'metabolic channelling' of pentose from uridine in Ehrlich ascites tumour cells. Therefore, the constantly lowered growth-rate in uridine-supplemented cells observed with long-term culture experiments could reflect an adaption of growth-cycle to these limitations.  相似文献   

16.
The distribution of Chinese hamster cells with respect to the compartments of the cell generation cycle was studied in cultures in the stationary phase of growth in two different media. A measure of the state of depletion of the nutrient medium was formulated by defining a quantity termed the nutritive capacity of the medium. This quantity was used to verify that the cessation of cell proliferation is due to nutrient deficiencies and not to density dependent growth inhibition. Cell cultures in stationary phase were diluted into fresh medium and as growth resumed, mitotic index, cumulative mitotic index, label index and viability were measured as a function of time. The distribution of cells with respect to compartments of the cell generation cycle in stationary phase populations was reconstructed from these data. Stationary phase populations of Chinese hamster cells that retained the capacity for renewed growth when diluted into fresh medium were found to be arrested in the G1 and G2 portions of the cycle; the relative proportion of these cells in G1 increased with time in the stationary phase, but the sequence differs in the two media. In early stationary phase, in the less rich medium, more cells are in G2 than in G1. Also in this medium a fraction of the population was observed to be synthesizing DNA during stationary phase, but this fraction was not stimulated to renewed growth by dilution into fresh medium.  相似文献   

17.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

18.
Abstract. Twelve methods for analysing FCM-histograms were compared using the same set of data. Some of the histograms that were analysed were simulated by computer and some were taken from experiments. Simulated data were generated assuming asynchronously growing cell populations and (i) measurement coefficients of variation ( CV ) from 2 to 16%; (ii) constant measurement CV or CV 's increasing from G1 to G2 phase, and (iii) varying fractions of cells in each phase. Simulated data were also generated assuming synchronous cell populations in which a block in early S phase was applied and released. DNA histograms were measured for L-929 cells at various times after mitotic selection. Labelling indices were also measured for these cells at the same time.
The fractions of cells in the G1, S, and (G2+ M) phases were calculated by each analytical method and compared with the actual fractions used for simulation, or in case of experimental data, with autoradiographic results. Generally, all methods yielded reasonably accurate fractions of cells in each phase with relative errors in the range of 10–20%. However, most methods tended to overestimate G1 fractions and underestimate S fractions. In addition, variations in the shape of the S phase distribution often caused considerable errors. Phase fractions were also calculated for histograms of kinetically perturbed populations, simulated as well as experimental The errors were only slightly larger than for histograms from asynchronously growing cell populations.  相似文献   

19.
Abstract. Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. the retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. the repair curves (surviving fraction us time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

20.
Abstract. To analyse the putative role of methylation of cytosine residues in the nuclear DNA as a regulatory step during cellular ageing, we incubated ageing human amniotic fluid derived fibroblast-like cells and non-ageing NIH-3T3 cells with 5-azacytidine. BrdUrd/Hoechst and acridine orange (AO) flow cytometry was used to compare the effects of the base analogue on cell proliferation and cell differentiation. In NIH-3T3 cultures, 96 h exposures to 4 μM 5-azacytidine caused diminished cell proliferation due to cell arrest in the G1 compartments of the second and third cell cycles of serum stimulated cells. The exit from the G0/G1 compartment was not affected. The 5-azacytidine induced cell kinetic disturbances were unstable in NIH-3T3 cultures, such that pre-treated cells reverted to normal cell cycle transit within 2–3 days after termination of treatment. In contrast, 5-azacytidine pre-treated amniotic fluid derived fibroblast-like cell cultures showed persistently elevated G2 phase arrests and delayed G0/G1 phase exit kinetics, which explain the premature cessation of proliferation observed in these primary cultures. In both cell systems, 5-azacytidine exposed cultures showed elevated numbers of G1 phase cells with increased RNA content as revealed by AO flow cytometry. Again, this effect was reversible in NIH-3T3 cells but not in amniotic fluid derived fibroblast-like cells. These contrasting responses to 5-azacytidine are likely to reflect intrinsic differences in methylation patterns or de novo methylase activity between ageing cell strains and non-ageing cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号