首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobium japonicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined. The number of soybean rhizobia in the sludge-amended soils was found to increase with increasing rates of sludge. Soybean rhizobia strains from 11 serogroups were identified in the soils; however, no differences in serogroup distribution or proportion of resistant strains were found between the soils. Thus, the application of heavy metal-containing sewage sludge did not have a long-term detrimental effect on soil rhizobial numbers, nor did it result in a shift in nodule serogroup distribution.  相似文献   

2.
The effects of preexposure of soybean (Glycine max L. Merrill) roots to Rhizobium japonicum strains and subsequent establishment of other strains in the nodules were investigated by using combinations of effective strains (USDA 110 and USDA 138) and effective-ineffective strains (USDA 110 and SM-5). Strain USDA 110 was a better competitor than either USDA 138 or SM-5 on cultivars Lee and Peking. However, when either of the two less-competitive strains was inoculated into 2-day-old seedlings before USDA 110 was, their nodule occupancy increased significantly on both cultivars. With USDA 138 as the primary inoculum and USDA 110 delayed for 6, 48, and 168 h, the incidence of USDA 138 nodules increased on cultivar Peking from 6% (at zero time) to 28, 70, and 82% and on cultivar Lee from 17% (at zero time) to 32, 88, and 95% for the three time delays, respectively. Preexposure of 2-week-old roots of cultivar Lee to USDA 138 had essentially the same effect: the incidence of USDA 138 nodules increased from 23% at zero time to 89 and 97% when USDA 110 was delayed for 24 and 72 h, respectively. When the ineffective strain SM-5 was used as the primary inoculum, followed by USDA 110 72 h later, the percentage of nodules containing SM-5 increased from 7 to 76%. These results indicate that the early events in the nodulation process of soybeans are perhaps the most critical for competition among R. japonicum strains.  相似文献   

3.
Soil Bradyrhizobium populations limit nodule occupancy of soybean by symbiotically-superior inoculant strains throughout much of the American midwest. In this study, the competitiveness of indigenous populations of B. japonicum serocluster 123 from Waukegan and Webster soils was evaluated in growth pouches using a root-tip marking procedure. The native rhizobia were from soils incubated 0–8 h in soybean root exudate (SRE) or plant nutrient solution (PNS) prior to inoculation. Populations of serocluster 123 strains in soil and nodule occupancy by these strains were assessed using fluorescent antibodies prepared against B. japonicum USDA 123. There were no significant differences in populations that came from SRE or PNS incubated soils: both populations increased in number over the incubation period. Nodule occupancy by both populations in growth pouches was similar to that previously encountered in field studies with these two soils. With the Waukegan soil, the serocluster 123 population dominated nodulation forming 69 and 62% of taproot nodules above and below the root tip mark, respectively. However, for the more alkaline Webster soil, serocluster 123 strains were much less competitive, producing only 9 and 13%, respectively, of the nodules formed above and below the root tip mark. In growth pouches, soil populations of bradyrhizobia from the Webster soil produced significantly more nodules than those from the Waukegan soil, but both strains and a pure culture of USDA 110 had a similar distribution of nodules.  相似文献   

4.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

5.
The displacement of indigenous Bradyrhizobium japonicum in soybean nodules with more effective strains offers the possibility of enhanced N2 fixation in soybean (Glycine max (L.) Merr.). Our objective was to determine whether the wild soybean (G. soja Sieb. & Zucc.) genotype PI 468397 would cause reduced competitiveness of important indigenous B. japonicum strains USDA 31, 76, and 123 and thereby permit nodulation by Rhizobium fredii, the fast-growing microsymbiont of soybean. In an initial experiment, PI 468397 nodulated and fixed moderate amounts of N2 with USDA 31 and 76 but, despite the formation of nodules, fixed essentially no N2 with USDA 123. In contrast, PI 468397 formed a highly effective symbiosis with R. fredii strain USDA 193. In two subsequent experiments, Williams soybean and PI 468397 were grown in a pasteurized soil mixture or in soybean rhizobium-free soil and inoculated with both USDA 123 and USDA 193. In each experiment, more than 90% of the nodules of Williams contained USDA 123, while only a maximum of 2% were occupied with USDA 193. In contrast, in the two experiments, 16 and 11%, respectively, of the nodules produced on PI 468397 were occupied by USDA 123, while in both experiments 87% contained USDA 193. Thus, in relation to the cultivar Williams, which is commonly grown and used as a parent in soybean breeding programs in the United States, PI 468397 substantially reduced the competitive ability of B. japonicum strain USDA 123 in relation to R. fredii strain USDA 193.  相似文献   

6.
Summary The ecology, strain evaluation, genetics of host strain interactions and physiology of nitrogen fixation ofRhizobium japonicum in association with the soybean,Glycine max, were studied. Results of inoculation experiments with selected strains ofRhizobium japonicum indicated that indigenous strains occupied most of the nodules of soybeans grown in highRhizobium japonicum populated soils. Nodule sampling indicated that inoculation did not result in quicker nodulation or a higher incidence of root nodules (primary or secondary) than uninoculated checks. Rhizosphere studies indicated that colonization by introduced strains did occur but did not compete successfully with field strains for nodule sites. Recovery of specific serological types from nodules was influenced by planting intervals. The distribution of the serotypes varied with the time of planting and the age of the plant. Temperature studies indicated that the distribution of serotypes recovered from the nodules was influenced by temperature. Field studies showed the selectivity of soybean genotypes on strains ofRhizobium japonicum. Some strains were more common in the nodules of some varieties than in others. Closely related varieties had similar populations in their nodules. Three genes which control nodule response in soybeans are reported. Nitrogen fixation profiles were determined for some variety-strain interactions. Combinations previously classified as inefficient showed some nitrogenase activity as measured by the acetylene reduction technique. Research Microbiologist; Research Agronomist; Research Plant Physiologist, Soybean Investigations, Crops Research Division, Beltsville, Md. (USDA, ARS); and Plant Pathologist currently located at Michigan State University, East Lansing, Michigan.  相似文献   

7.
The effect of several biotic and abiotic factors on the pattern of competition between two strains of Rhizobium japonicum was examined. In two Minnesota soils, Waseca and Waukegan, strain USDA 123 occupied 69% (Waseca) and 24% (Waukegan) of the root nodules on Glycine max L. Merrill cv. Chippewa. USDA 110 occupied 2% of the root nodules in the Waseca soil and 12% of the nodules in the Waukegan soil. Under a variety of other growth conditions—vermiculite, vermiculite amended with Waseca soil, and two Hawaiian soils devoid of naturalized Rhizobium japonicum strains—USDA 110 was more competitive than USDA 123. The addition of nitrate to or the presence of antibiotic-producing actinomycetes in the rhizosphere of soybeans did not affect the pattern of competition between the two strains. However, preexposure of young seedings to USDA 110 or USDA 123 before transplantation into soil altered the pattern of competition between the two strains significantly. In the Waseca soil, preexposure of cv. Chippewa to USDA 110 for 72 h increased the percentage of nodules occupied by USDA 110 from 2 to 55%. Similarly, in the Hawaiian soil Waimea, nodule occupancy by USDA 123 increased from 7 to 33% after a 72-h preexposure.  相似文献   

8.
The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.  相似文献   

9.
This study investigated differences in sensitivity to nitrate of soybean (Glycine max cv. Davis) symbioses with 16 different Rhizobium japonicum strains. When nitrate (20 mM) was added to established symbioses, there were no significant differences in the degree of inhibition of acetylene reduction for any of the 16 strains. When nitrate was present during the establishment of nodules, high levels of nitrate (10 mM) were equally inhibitory on all symbioses, whereas specific strain effects appeared at low (0.5 mM) to medium (2.0 mM) levels of nitrate. At 1.5 mM nitrate in solution culture, the days to emergence of nodules varied from less than 10 (CB:1809, Nit61A118) to more than 16 (11 of 16 strains). In a clay-pot trial maintained at the low nitrate level (0.5 mM), symbioses with CB:1809 increased total nodule mass by 30% relative to nitrate-free controls. In the presence of 2.0 mM nitrate, CB:1809 maintained total nodule mass. For the remaining 6 strains tested, total nodule mass decreased to below the levels of the nitrate-free controls. In a separate clay pot trial, CB:1809 increased its competitive ability relative to USDA:110 when nitrate was added. If no nitrate was added, CB:1809 occupied 0.97 times as many nodules as USDA:110; when 10 mM nitrate was added, CB:1809 occupied 1.75 times as many nodules as USDA:110. Attempts to select nitrogen-adapted substrains of R. japonicum through sequential isolation and infection of plants grown on nitrate were not successful.  相似文献   

10.
The symbiotic potential of Bradyrhizobium japonicum isolates indigenous to seven Korean soils was evaluated by inoculating soybeans with 10- and 1,000-fold-diluted soil suspensions (whole-soil inocula). At both levels, significant differences in the symbiotic potential of the indigenous B. japonicum isolates were demonstrated. The relationship between rhizobial numbers in the whole-soil inocula (x) and nitrogen fixation parameters (y) was best predicted by a straight line (y = a + bx) when the numbers in the inocula were 100 to 10,000 ml-1, while the power curve (y = axb) predicted the variation when the numbers were 1 to 100 ml-1. Thirty isolates from three soils showed wide differences in effectiveness (measured as milligrams of shoot N per plant), and several were of equal or greater effectiveness than reference strain B. japonicum USDA 110 on soybean cultivars Clark and Jangbaekkong. On both of the soybean cultivars grown in a Hawaiian mollisol, the Korean B. japonicum isolate YCK 213 and USDA 110 were of equal effectiveness; USDA 110 was the superior strain in colonization (nodule occupancy). Korean isolates YCK 117 and YCK 141 were superior colonizers compared with USDA 110. However, B. japonicum USDA 123 was the superior colonizer compared with isolates YCK 213, YCK 141, and YCK 117. In an immunoblot analysis of 97 indigenous Korean isolates of B. japonicum, 41% fell into the USDA 110 and USDA 123 serogroups. Serogroups USDA 110 and USDA 123 were represented in six of the seven soils examined. In one Korean soil, 100% of the B. japonicum isolates reacted only with antisera of YCK 117, an isolate from the same soil.  相似文献   

11.
J. Evans 《Plant and Soil》1982,66(3):439-442
Summary The effect of mineral nitrogen on establishment and activity of symbioses between soybean and several strains ofRhizobium japonicum and on the establishment of nodules ofR. japonicum isolated from nodules of field crops is studied. All strains were highly susceptible to the effects of 200 ppm NO3–N on the establishment of symbiosis; 50 ppm NO3–N had little effect. Response of symbioses establishhed in the absence of mineral N to short term exposure to nitrate or ammonium varied significantly between strains. Nodule isolates from soybean crops growing in nitrifying soil were no less susceptible to the inhibitory effects of mineral N on nodule formation than a laboratory culture of the commercial inoculant strain.  相似文献   

12.
In the American Midwest, superior N2-fixing inoculant strains of Bradyrhizobium japonicum consistently fail to produce the majority of nodules on the roots of field-grown soybean. Poor nodulation by inoculant strains is partly due to their inability to stay abreast of the expanding soybean root system in numbers sufficient for them to be competitive with indigenous bradyrhizobia. However, certain strains are noncompetitive even when numerical dominance is not a factor. In this study, we tested the hypothesis that the nodule occupancy achieved by strains is related to their nodule-forming efficiency. The nodulation characteristics and competitiveness of nine strains of B. japonicum were compared at both 20 and 30°C. The root tip marking technique was used, with the nodule-forming efficiency of each strain estimated from the average position of the uppermost nodule and the number of nodules formed above the root tip mark. The competitiveness of the nine strains relative to B. japonicum USDA 110 was determined by using immunofluorescence to identify nodule occupants. The strains differed significantly in competitiveness with USDA 110 and in nodulation characteristics, strains that were poor competitors usually proving to be inferior in both the average position of the uppermost root nodule and the number of nodules formed above the root tip mark. Thus, competitiveness was correlated with both the average position of the uppermost nodule (r = 0.5; P = 0.036) and the number of nodules formed above the root tip mark (r = 0.64; P = 0.005), while the position of the uppermost nodule was also correlated to the percentage of plants nodulated above the root tip mark (r = 0.81; P < 0.001) and the percentage of plants nodulated on the taproot (r = 0.67; P = 0.002).  相似文献   

13.
Three strains of Bradyrhizobium japonicum, I17, 110, and 61A76, were evaluated for their ability to form nodules on field-grown soybeans in soil with a highly competitive indigenous B. japonicum population. The predominant indigenous strain, 0336, in the field site used was unlike the more common isolates from Midwestern soils which belong to the 123 or 138 serogroups. This strain persisted in the soil for at least 30 years without any soybean crops. The three inoculant strains differed in their ability to compete with indigenous strains for nodule formation. Four different inoculation treatments were tested in three adjacent fields. When the amount of inoculum was increased, a higher proportion of nodules contained the inoculant strain. The most competitive inoculant strain was I17, a recent field isolate. Strain 61A76 was better than 110. There was no difference in recovery of the inoculant strains on the Hodgson or Corsoy soybean cultivars, nor was there a difference in recovery of the inoculant strains during the growing season. The vertical distribution of nodules containing the inoculant strains was affected by the method of adding the inoculant to the soil. Inoculant added to the seed furrow produced nodules mainly in the top region of the soybean root. Inoculant tilled into the soil produced nodules primarily in the bottom part of the root. The nodules that were produced in the bottom part of the root are younger and may contribute significant amounts of fixed nitrogen to the soybean during seed formation.  相似文献   

14.
Certain strains of Bradyrhizobium japonicum produce large quantities of polysaccharide in soybean (Glycine max (L.) Merr.) nodules, and nodule polysaccharide (NPS) is different from that produced in culture. A previous survey of field-grown plants showed highly variable levels of NPS among field sites. To obtain clues about the possible function of NPS, we conducted two additional surveys of field-grown plants. The amount of polysaccharide in bulk samples of nodules was not associated with soil type, texture, slope, drainage, or any of the measured soil chemical properties except pH and [Ca]. Correlations with pH and [Ca] were positive and highly significant for two independent surveys involving a total of 77 sites in two years. In a preliminary comparison of high and low levels of Ca supplied to soybean plants grown in silica sand in a greenhouse, a high level of Ca (200 mg of Ca liter-1) increased the NPS level and increased the Ca content of the polysaccharide fraction. B. japonicum isolates from 450 nodules collected at 10 field sites in 1993 were used to form nodules on soybean plants grown in sand culture in a greenhouse in order to examine bacterial phenotype under controlled conditions. Results showed that the NPS level in the bulk nodule sample from any given site was a function of the proportion of nodule occupants that were capable of NPS synthesis. Thus, a higher soil pH and/or [Ca] may positively influence the survival of B. japonicum capable of synthesis of the nodule-specific polysaccharide.  相似文献   

15.
The utilization of gels, which are used for fluid drilling of seeds, as carriers of Bradyrhizobium japonicum for soybean (Glycine max (L.) Merr.) inoculation was studied. Gels of various chemical composition (magnesium silicate, potassium acrylate-acrylamide, grafted starch, and hydroxyethyl cellulose) were used, although the hydroxyethyl cellulose gels were more extensively investigated. Gel inocula were prepared by mixing gel powder with liquid cultures of B. japonicum (2% [wt/vol]). The population of B. japonicum USDA 110 did not change in each gel type during 8 days of incubation at 28°C. These fluid gels were prepared with late-exponential-growth-phase cells that were washed and suspended in physiological saline. Mid-exponential-growth-phase B. japonicum USDA 110, 123, and 138 grew in cellulose gels prepared with yeast extract-mannitol broth as well as or better than in yeast extract-mannitol broth alone for the first 10 days at 28°C. Populations in these cellulose gels after 35 days were as large as when the gels had originally been prepared, and survival occurred for at least 70 days. Soybeans grown in sand in the greenhouse had greater nodule numbers, nodule weights, and top weights with gel inoculants compared with a peat inoculant. In soil containing 103 indigenous B. japonicum per g of soil, inoculation resulted in increased soybean nodule numbers, nodule weights, and top weights, but only nodule numbers were greater with gel than with peat inoculation. The gel-treated seeds carried 102 to 103 more bacteria per seed (107 to 108) than did the peat-treated seeds.  相似文献   

16.
Twenty recently obtained field isolates of Bradyrhizobium japonicum serogroup 123 were tested for their nodule mass production on the standard commercial soybean (Glycine max (L.) Merr. cv. Williams) and on two soybean plant introduction (PI) genotypes previously determined to restrict nodulation by strain USDA 123. Four of the field isolates showed similar restricted nodulation on the two genotypes, while all 20 isolates produced a normal amount of nodules on G. max cv. Williams. Serological analyses with adsorbed fluorescent antibodies showed that members of the 123 serotype ranked low in nodulation of the two PIs, in contrast to members of serotypes 127 and 129. Competition studies on the PIs indicated that isolates which were restricted were not competitive for nodule occupancy against strain USDA 110. However, unrestricted isolates of serogroup 123 were very competitive against USDA 110. On G. max cv. Williams, all serogroup 123 isolates tested were very competitive against USDA 110.  相似文献   

17.
Organic farmers recognize the importance of rhizobial associations with legume plants to help meet N fertility and plant productivity needs. A field experiment was done at three organic fields in Minnesota to assess the effect of indigenous Bradyrhizobium japonicum ORGS3 and ORGS5 and reference USDA 110 strains on the growth and yield performance of soybean. Soybean genotypes MN1505SP and Lambert inoculated with B. japonicum ORGS3 had significantly greater (P < 0.01) nodule numbers (42.1 ± 2.5), herbage N-contents (4.02 ± 0.01%), dry biomass (12.60 ± 1.45 g), and plant populations (117,890 ± 288.13 plant/acre) compared with the un-inoculated control. Grain yields were not affected by inoculation. Most nodules formed on non-inoculated Lambert (70%) and MN1505SP (53%) were occupied by strain ORGS5. The inoculant strains USDA110 and ORGS5 increased nodule occupancy by 10% on MN1505SP and Lambert. In contrast, strain ORGS3, and the combination of strains ORGS5 plus ORGS3, increased nodules occupancy on Lambert by 23 and 20%, respectively, compared with the control. The majority of nodules on Lambert (59%) and MN1505SP (52%) in the Farmington and Lamberton fields, respectively, were occupied by ORGS5. In contrast, 41 and 45% of nodules formed on Lambert and MN1505SP at Rosemount, respectively, were occupied by strain ORGS3. The lowest percentage of nodules formed on Lambert (4%) and MN1505SP (5%), in the Farmington field, were occupied by USDA110. These results showed that Bradyrhizobium strains ORGS3 and ORGS5 can be used to enhance N fixation and productivity of organically-grown soybeans grown in Minnesota fields.  相似文献   

18.
Hydrogen (H2) is a by-product of the symbiotic nitrogen fixation (N2 fixation) between legumes and root-nodule bacteria (rhizobia). Some rhizobial strains have an uptake hydrogenase enzyme (commonly referred to as Hup+) that recycles H2 within the nodules. Other rhizobia, described as Hup?, do not have the enzyme and the H2 produced diffuses from the nodules into the soil where it is consumed by microorganisms. The effect of this phenomenon on the soil biota and on the soil itself, and consequent stimulation of plant growth, has been demonstrated previously. Soybeans [Glycine max (L.) Merr.] cv. Leichhardt, inoculated with either a Hup+ strain (CB1809) or one of two Hup? strains (USDA442 or USDA16) of Bradyrhizobium japonicum and uninoculated soybeans, plus a non-legume control [capsicum (Capsicum annuum L.)] were grown in the field at Ayr, North Queensland, Australia. The objectives were to examine (1) relationships between N2 fixation and H2 emission, and (2) the influence H2-induced changes in soil might have during the legume phase and/or on the performance of a following crop. Strains CB1809 and USDA442 were highly effective in N2 fixation (“good” fixers); USDA16 was partly effective (“poor” fixer). The soil had a large but non-uniformly distributed naturalised population of B. japonicum and most uninoculated control plants formed nodules that fixed some N2. These naturalised strains were classified as “poor fixers” of N2 and were Hup+. H2 emissions from nodules were assessed for all treatments when the soybean crop was 62 days old. Other parameters of symbiotic N2 fixation and plant productivity were measured when the crop was 62 and 96 days old and at crop maturity. Immediately after final harvest, the land was sown to a crop of maize (Zea mays L.) in order to determine the consequences of H2 emission from the soybean crop on maize growth. It was estimated that soybeans inoculated with USDA442, the highly effective Hup strain of B. japonicum, fixed 117 kg shoot N/ha (or about 195 kg total N/ha if the fixed N associated with roots and nodules was taken into account), and contributed about 215,000 l H2 gas per hectare to the ecosystem over the life of the crop. The volume of H2 evolved from soybeans nodulated by the Hup+ strain CB1809 was only 6% of that emitted by the USDA442 treatment, but there was no indication that soybean inoculated with USDA442 benefited from the additional H2 input. The shoot biomass, grain yield, and amounts of N fixed (105 kg shoot N/ha, 175 kg total N/ha) by the CB1809 treatment were little less than for USDA442 plants. Three days after the soybean crop was harvested, the plots were over-sown with maize along the same row lines in which the soybeans had grown. This procedure exposed the maize roots to whatever influence soybean H2 emission might have had on the soil and/or the soil microflora immediately surrounding soybean nodules. The evidence for a positive effect of soybean H2 emission on maize production was equivocal. While the consistent differences between those pre-treatments that emitted H2 and those that did not indicated a trend, only one difference (out of the 12 parameters of maize productivity that were measured) was statistically significant at P?<?0.05. The findings need substantiation by further investigation.  相似文献   

19.
Soybean (Glycine max) is an introduced crop in India. Over the years it has been regularly inoculated with indigenous rhizobia. In this study genetic diversity has been studied at a site where soybean has been regularly grown with inoculation. Rhizobia were plant trapped using soybean varieties as host, and fingerprinted using BOX-PCR. BOX-PCR genomic fingerprints of 69 isolates from the nodules of 4 soybean varieties Pusa22, Bragg, PK1041 and PK1142 showed a high level of genetic diversity. The population profiles of the 69 isolates clustered them into 10 groups. Root nodule isolates from the four varieties were Bradyrhizobium japonicum types, growing in 4–7 days with typical colonies which were found to be genetically distinct from the USDA and SEMIA strains of B. japonicum and B. elkanii. Also the genotype of the host plant seemed to be one of the factors determining the diversity. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Indian soils.  相似文献   

20.
Certain strains of Bradyrhizobium japonicum form a previously unknown polysaccharide in the root nodules of soybean plants (Glycine max (L.) Merr.). The polysaccharide accumulates inside of the symbiosome membrane—the plant-derived membrane enclosing the bacteroids. In older nodules (60 days after planting), the polysaccharide occupies most of the symbiosome volume and symbiosomes become enlarged so that there is little host cytoplasm in infected cells. The two different groups of B. japonicum which produce different types of polysaccharide in culture produce polysaccharides of similar composition in nodules. Polysaccharide formed by group I strains (e.g., USDA 5 and USDA 123) is composed of rhamnose, galactose, and 2-O-methylglucuronic acid, while polysaccharide formed by group II strains (e.g., USDA 31 and USDA 39) is composed of rhamnose and 4-O-methylglucuronic acid. That the polysaccharide is a bacterial product is indicated by its composition plus the fact that polysaccharide formation is independent of host genotype but is dependent on the bacterial genotype. Polysaccharide formation in nodules is common among strains in serogroups 123, 127, 129, and 31, with 27 of 39 strains (69%) testing positive. Polysaccharide formation in nodules is uncommon among other B. japonicum serogroups, with only 1 strain in 18 (6%) testing positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号