首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reduced rate of greening after continuous illumination was observed in dark-grown cress seedlings ( Lepidium sativum L.) incubated with 5-aminolevulinate (ALA) or the complexing agents 2,2'-bipyridyl, 8-hydroxyquinoline or 1,10-phenanthroline. This effect cannot be explained merely by photodynamic damage caused by chlorophyll precursors which are accumulated in the dark under these conditions. Flash light experiments revealed that photoconversion of protochlorophyll(ide) to chlorophyllide was not influenced by chelator treatment. The next step in the chlorophyll pathway, the esterification of chlorophyllide, however, was inhibited. Simultaneously applicated ALA and complexing agents did not result in a synergistic reponse; on the contrary, ALA seemed to render cress plants less susceptible to the treatment with complexing agents upon subsequent irradiation. Ultrastructural studies demonstrated that grana formation in light was inhibited after pretreatment with ALA or complexing agents.  相似文献   

2.
Summary We have examined ultrastructural changes of mesophyll cells in pea leaves induced by the photodynamic herbicide 1,10-phenanthroline (Phe). Dark incubation of pea plants did not cause any damage in plants or changes in the ultrastructure of mesophyll cells. Two hours of illumination after pretreatment with Phe caused photooxidative damage in plant but was not sufficient to markedly change the ultrastructure, although dilation of endoplasmic reticulum (ER) cisternae occurred. Illumination for 12 h caused inhibition of grana formation in pretreated plants. These ultrastructural changes and the inhibition of chlorophyll (Chl) accumulation may be due to the inhibition of transport of certain proteins to the plastids, diminished accumulation of chlorophyll proteins (e.g., LHCP) and a decrease in activity of the chlorophyll synthetase.Abbreviations ALA 5-aminolevulinate - 2,2 2,2-bipyridyl - Chl chlorophyll - ER endoplasmic reticulum - 8H 8-hydroxyquinoline - LHCP light-harvesting chlorophyll a/b-binding proteins - PBs prolamellar bodies - Mg-Proto Mg-protoporphyrin - Mg-Proto-Me Mg-protoporphyrin monomethyl ester - Pchlide protochlorophyllide - Phe 1,10-phenanthroline - Proto protoporphyrin IX  相似文献   

3.
4.
The effects of 2,2′-bipyridyl on porphyrin formation differed in illuminated and dark-treated barley leaves. In the dark, bipyridyl treatment increased photoconvertible protochlorophyllide (Pchlide, P650) and decreased the protohaem content. The increase in Pchlide could not be wholly accounted for by a diversion of ‘substrate’ from protohaem synthesis. The rate of Pchlide regeneration was slightly higher in chelator treated leaves which suggests increased δ-aminolaevulinic acid (ALA) synthesis. Only small quantities of Mg-protoporphyrinmonomethylester (Mg-protoME) were detected in etiolated leaves treated with bipyridyl in the dark. Protochlorophyll (P630) synthesis from exogenously supplied ALA was lower in the chelator treatments. The results suggest that only when substantial quantities of ALA are being utilized in dark-grown leaves does a ‘metal’ become limiting in the bipyridyl treated leaves. In the light, bipyridyl inhibited chlorophyll synthesis, again suggesting that when substantial amounts of ALA were being utilized a ‘metal’ becomes rate limiting. Bipyridyl treatment also inhibited ALA production in light-treated leaves. The incorporation of glycine-[14C] into ALA in the presence of bipyridyl was severely restricted compared to the incorporation of glutamate-[14C]. The data suggest two pathways for ALA synthesis; the classical ALA-synthetase which utilizes glycine and is operative in dark-grown leaves and a second enzyme system, which uses glutamate, and is of quantitative importance in the light.  相似文献   

5.
6.
7.
Cells of the mutant C-2A' of Scenedesmus obliquus which requirelight for chlorophyll formation were assayed for in vivo activityof ALA synthesis. In general, ALA and chlorophyll syntheseswere coupled during the greening process. The action spectrafor ALA and chlorophyll syntheses both show the highest activitiesin the blue region, but were different in details. Under certainconditions, ALA synthesis occurred without a corresponding synthesisof chlorophyll. Reasons for these variances were discussed. The controlling action of light on ALA synthesis may occur throughthree different, but related, mechanisms. The principle mechanismappeared to be linked to lightenhanced respiration since itsinhibition by cycloheximide blocks ALA synthesis. The Hill coefficientof this inhibition is 2. After the light-induced enhancementof respiration had ceased, the Hill-coefficient of inhibitionof ALA synthesis became 1. Thus, in addition to enhanced respiration,ALA formation depends on its sensitizing enzyme having a half-lifetime of less than 1 hr. Finally, the dependence of the synthesisof ALA precursors on light was evident. 1 On leave from the Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. (Received November 11, 1974; )  相似文献   

8.
1. The inhibition of diamine oxidase has been studied by using the following copper-chelating reagents: 1,10-phenanthroline; 2,2'-bipyridyl; 8-hydroxyquinoline (oxine); diethyldithiocarbamate and dithio-oxamide (rubeanic acid). 2. Addition of chelating reagent caused a rapid inhibition of enzyme to a degree dependent solely on the final inhibitor concentration. Addition of substrate gave linear initial rates of reaction showing that under these conditions the inhibition was not being rapidly reversed. 3. The inhibition has been investigated by using new graphical methods and has been found in all cases to involve the chelating agents completely removing two Cu(2+) ions from the enzyme. An alternative possibility, involving ligand substitution, was eliminated. 4. A value of K=8.0x10(-33)m(-2) has been found for the enzyme in equilibrium with 2 Cu(2+) ions (i.e. beta(2), the stability constant for diamine oxidase/two Cu(2+), is 32.1).  相似文献   

9.
10.
A 1-min light pulse delivered to mustard seedlings (Sinapis alba L.) 60 h after sowing initiates the release of cotyledonary 5-aminolaevulinate (ALA) accumulation which continues for at least 2 h in the dark. Phytochrome (P fr) increases the rate of ALA accumulation after a 24-h red light pretreatment but is not the trigger for this release. It is shown that the rate of ALA accumulation varies with the wave-length and fluence rate of the 1-min light pulse and can be predicted from the degree of protochlorophyll-(ide) photoconversion. There is a linear correlation between the rate of ALA accumulation and the degree of protochlorophyll(ide) (PChl)chlorophyll(ide) a (Chl a) photoconversion in etiolated seedlings. In seedlings pretreated with red light this correlation is non-linear and the rate increases more rapidly with increasing degrees of PChlChl a photoconversion. It is suggested that there may exist an interaction between P fr and PChlChl a photoconversion in controlling ALA accumulation.Abbreviations ALA 5-aminolaevulinate - Chl chlorophyll(ide) - PChl protochlorophyll(ide) - cp cotyledon pair - LA laevulinate  相似文献   

11.
J Oelze 《Journal of bacteriology》1992,174(15):5021-5026
Control of the synthesis of bacteriochlorophylls (Bchls) a and c by light and oxygen was studied in Chloroflexus aurantiacus grown in batch or chemostat culture with serine as the growth-limiting substrate. For comparison, inhibition by gabaculine of the formation of selected tetrapyrroles was studied. The inhibitory effect of gabaculine decreased in the following order of tetrapyrrole formation: coproporphyrin greater than Bchl c greater than Bchl a. Not only did addition of 5-aminolevulinate (ALA) reverse the inhibition by gabaculine, it also caused an increase in Bchl c content when the cultures grew at high concentrations of ALA. Inhibition of Bchl a, Bchl c, and coproporphyrin formation by oxygen was similar to inhibition by gabaculine. Addition of ALA to aerated cultures led to significant accumulation of coproporphyrin. These results suggest that oxygen inhibits tetrapyrrole formation at a site before ALA formation. Control by light was studied with chemostat cultures transferred from 5 klx to 25 klx. This resulted in only a transient increase of the protein level of the culture, while specific contents of Bchls c and a and the ratio Bchl c/Bchl a decreased to lower steady states. However, the specific content of coproporphyrin increased. Addition of ALA to chemostat cultures adapted to 50 klx increased specific coproporphyrin and Bchl c contents by factors of about 20 and 4, respectively, while the specific Bchl a content was only slightly increased and protein levels were unaffected. Increasing the serine concentration caused an initial increase in the specific Bchl c content, which returned to the original value as soon as the protein content had attained its maximal level. These results suggest that light does not control ALA formation as strictly as oxygen and that competition of biomass formation and tetrapyrrole synthesis for common precursors may be influenced by light.  相似文献   

12.
13.
14.
The effect of pretreatment of cucumber (Cucumis sativus L.) roots with choline chloride or ethanolamine on leaf phospholipid composition and light-induced leaf damage during chilling was studied. Photooxidative chlorophyll degradation was similarly inhibited by both amino alcohols. The decrease of the chlorophyll a/chlorophyll b ratio and the increase of polyunsaturated-fatty-acid degradation during chilling in the light were equally inhibited by pretreatment with choline chloride or ethanolamine. Treatment with choline chloride and ethanolamine caused, respectively, 43% and 26% increases in the total phospholipid contents of the leaves. After treatment with choline chloride, the phosphatidylcholine content was higher than the content of phosphatidylethanolamine; the reverse was true after treatment with ethanolamine. The chlorophyll concentration increased less than the phospholipid concentration, resulting in a decreased chlorophyll/phospholipid ratio of treated leaves. During chilling in the light, degradation of phosphatidylcholine, ethanolamine and phosphatidyl glycerol occurred. Phosphatidyl glycerol was less sensitive than phosphatidylcholine and ethanolamine. The degradation was equally inhibited by pretreatment with either amino alcohol. Possible connections between the phospholipid content of leaf membranes and the inhibition of chilling-induced photooxidative leaf damage are discussed.Abbreviations CC choline chloride - Chl chlorophyll - EA ethanolamine - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

15.
16.
17.
Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.  相似文献   

18.
19.
Cultured plant cells generally produce low levels of secondary metabolites, and elicitors of secondary metabolites usually inhibit callus growth. The aim of this study was to determine the effect of 5‐aminolevulinic acid (ALA), a chlorophyll precursor that promotes plant growth, on callus induction from leaves of Taxus cuspidata, and on callus growth on solid medium. ALA at 0.76, 7.6, and 76 μM had similar effects on callus induction and growth, while ALA at 760 μM had negative effects. Next, the effects of ALA concentrations on callus growth and paclitaxel production in suspension cultures in the dark were evaluated. The results showed that 0.76 and 7.6 μM ALA stimulated growth and paclitaxel production, while 76 μM ALA had negative effects. ALA is thought to promote cellular activity under light conditions. Therefore, the effects of light intensity on callus growth and paclitaxel production in the presence of ALA were evaluated. Our results showed that the best conditions for callus growth and paclitaxel production were 7.6 μM ALA under photosynthetically active radiation of 12 μmol photons m?2 s?1. Callus growth and paclitaxel production were inhibited under stronger light (24 μmol photons m?2 s?1). Together, these results show that ALA promoted callus growth and the production of paclitaxel by light‐grown cultured T. cuspidata cells.  相似文献   

20.
The amounts of protochlorophyllide (P650) and protohaem were measured in ageing dark-grown barley leaves. Maximum amounts of P650 and protohaem were found in 6- to 8-day-old material after which P650 declined rapidly and protohaem more slowly. In leaves exposed to light maximum chlorophyll was produced in 6-day-old material with progressively less the older the leaves. Haem concentrations increased in seedlings of all ages exposed to light. A lag phase was observed for both chlorophyll and haem formation in leaves given a light treatment. Haem, however, showed a slight yet sig nificant decline as chlorophyll production commenced. The results indicate that chlorophyll and haem synthesis share a common pool of δ-aminolae vulinic acid (ALA). At a certain stage of development, the magnesium porphyrin pathway diverts precursors away from haem synthesis. It is only when the ALA synthesising system is well developed that the production of ALA can satisfy pathways to both haem and chlorophyll. The observed changes in haem under certain conditions suggest that, as in animal systems, haem levels may regulate porphyrin formation (chlorophylls) by controlling the supply of ALA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号