首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular accumulation of denatured proteins impairs cellular function. The proteasome is recognized as an enzyme responsible for the effective clearance of those cytotoxic denatured proteins. As another enzyme that participates in the destruction of damaged proteins, we have identified oxidized protein hydrolase (OPH) and found that OPH confers cellular resistance to various kinds of oxidative stress. In this study, we demonstrate the roles of the proteasome and OPH in the clearance of denatured proteins. The inhibition of proteasome activity results in the elevation of protein carbonyls in cells under oxidative stress. On the other hand, cells overexpressing OPH retain higher resistance to oxidative stress, even though the proteasome activity is inhibited. Furthermore, upon inhibition of the proteasome activity, OPH is recruited to a novel organelle termed the aggresome where misfolded or denatured proteins are processed. Thus, OPH and the proteasome coordinately contribute to the clearance of cytotoxic denatured proteins.  相似文献   

2.
Protein carbonyl detection has been commonly used to analyze the degree of damage to proteins under oxidative stress conditions. Most laboratories rely on derivatization of carbonyl groups with dinitrophenylhydrazine followed by Western blot analysis using antibodies against the dinitrophenyl moiety. This paper describes a protein carbonyl detection method based on fluorescent Bodipy, Cy3 and Cy5 hydrazides. Using this approach, Western blot and immunodetection are no longer needed, shortening the procedure and increasing accuracy. Combination of Cy3 and Cy5 hydrazides allows multiplexing analyses in a single two-dimensional gel. Derivatization with Bodipy hydrazide allows easy matching of the spots of interest and those obtained by general fluorescent protein staining methods, which facilitates excising target proteins from the gels and identifying them. This method is effective for detecting protein carbonylation in samples of proteins submitted to metal-catalyzed oxidation "in vitro" and assessing the effect of hydrogen peroxide and chronological aging on protein oxidative damage in yeast cells.  相似文献   

3.
Lee MH  Park HW  Kim MH 《Life sciences》2006,79(25):2345-2348
In order to analyze the self-delivery activity of Hoxc8, recombinant Hoxc8 protein (rHoxc8) was designed to be expressed and purified in E. coli as a glutathione S-transferase and green fluorescent protein-fused form (GST-GFP-Hoxc8). After purification using glutathione sepharose beads, the 82 kDa fusion protein was separated on the SDS-PAGE gel and confirmed by detecting the fluorescence through luminescent image analyzer. When rHoxc8 was added to culture media for 30 h, most of the COS-7 cells contained the fusion proteins, showing green fluorescence under the fluorescent microscope. When the efficiency of cellular uptake was examined after Hoechst staining, almost 100% of the cells exhibited the GFP signal, revealing that rHoxc8 can traverse the cellular membrane of COS-7 cells efficiently, suggesting that the rHoxc8 could be applied in the development of efficient and useful delivery vectors for therapeutic molecules.  相似文献   

4.
何倩倩  杜子秀  何沐  臧怡  胡搌华  王菲  金拓 《生物磁学》2011,(12):2204-2206
目的:研究以乙二醛为连接剂的聚乙烯亚胺(Polyethyleneimine,PEI)衍生物Polyimine-PEI对非洲绿猴肾癌细胞COS-7的转染活性和细胞毒性的影响。方法:以荧光素酶质粒为报告基因,研究高分子与DNA的复合物在COS-7细胞的转染活性,用MTT方法研究高分子对COS-7细胞的毒性。结果:COS-7细胞实验显示,Polyimine-PEI具有很低细胞毒性,其毒性显著低于PEI25kDa,同时也具有高效输送质粒的能力。结论:Polyimine-PEI是一种新型的高效,低毒在基因治疗领域有相当前景的非病毒载体。  相似文献   

5.
目的:研究以乙二醛为连接剂的聚乙烯亚胺(Polyethyleneimine,PEI)衍生物Polyimine-PEI对非洲绿猴肾癌细胞COS-7的转染活性和细胞毒性的影响。方法:以荧光素酶质粒为报告基因,研究高分子与DNA的复合物在COS-7细胞的转染活性,用MTT方法研究高分子对COS-7细胞的毒性。结果:COS-7细胞实验显示,Polyimine-PEI具有很低细胞毒性,其毒性显著低于PEI25kDa,同时也具有高效输送质粒的能力。结论:Polyimine-PEI是一种新型的高效,低毒在基因治疗领域有相当前景的非病毒载体。  相似文献   

6.
Evidence suggests that muscarinic receptors (MAChRs) are involved in various aspects of neuronal and vascular functioning, and that there is selective oxidative stress sensitivity (OSS) among MAChR subtypes. COS-7 cells transfected with M1, M2 and M4 subtypes show greater OSS than the M1 and M3 subtypes, as seen by the decreased ability of cells to extrude or sequester calcium (Ca(2+)) following exposure to dopamine (DA) or A beta 25-35, and depolarization by oxotremorine. We sought to determine which receptor domain may be responsible for the differential vulnerability to OS between 'OS-sensitive' (M1) and 'non-sensitive' (M3) subtypes. Comparison of the amino acid sequences of each receptor has shown that the third cytoplasmic loop (i3 loop) is the domain with the most variability between the two subtypes. Therefore, mutations were made by either deleting or exchanging the i3 loop of M1 and M3 receptors. Experiments revealed that deletions of the i3 loop increased DA sensitivity (a lower percentage of cells showing recovery of [Ca(2+)](i) following depolarization) in both receptors. Chimerics of M1 in which the i3 loop of the M3 was exchanged with the i3 loop of the M1 (M1M3i3) showed that DA sensitivity was reduced (a greater percentage of cells showing increases in calcium clearance) following depolarization. The M3 chimerics containing the M1 i3 loop (M3M1i3) offered no protection against DA-induced decrements in calcium buffering. Results suggest that the longer i3 loop of the M3 may decrease OSS, possibly playing a role in targeting antioxidants to specific receptor sites that impart OSS.  相似文献   

7.
COS-1 cells were transfected with cDNAs coding for different human tau isoforms. Expressed tau isoforms bind to cellular microtubulesin vivo, preferentially at the distal regions of microtubules nucleated by the centrosome, leading to their stabilization. Eventually, tau-coated microtubules without any association with the centrosome were observed. A major difference between tau isoforms containing three tubulin-binding motifs and tau isoforms containing four tubulin-binding motifs is the greater ability of the latter in inducing the formation of long cytoplasmic processes.  相似文献   

8.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

9.
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose‐regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase‐3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries.  相似文献   

10.
Bone morphogenetic protein-7 (BMP-7) protects kidneys from diabetic nephropathy (DN), and high glucose (HG)-induced oxidative stress is involved in DN. We investigated the antioxidative ability of BMP-7 using HG-treated mesangial cells. We treated rat mesangial cells (RMCs) with recombinant human BMP-7 (rhBMP-7) and examined changes in reactive oxygen species (ROS) levels and intracellular signals in response to HG-induced oxidative stress. rhBMP-7 decreased the level of ROS in HG-treated RMCs. In contrast, lowering endogenous BMP-7 by siRNA or BMP receptor II (BMP-RII) by anti-BMP-RII antibodies increased the level of ROS in HG-treated RMCs. rhBMP-7 increased Smad-1,5,8 phosphorylation, decreased PKCζ and c-Jun N-terminal kinase (JNK) phosphorylation, and decreased fibronectin and collagen IV synthesis in HG-treated RMCs. In conclusion, we found that BMP-7 could protect mesangial cells from HG-induced oxidative stress by activating BMP-RII. The antioxidative activity of BMP-7 was primarily due to inhibition of PKCζ, JNK phosphorylation, and c-jun activation.  相似文献   

11.
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the K(m) lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins.  相似文献   

12.
Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.  相似文献   

13.
A bioassay-guided chemical investigation of the resin exudates from Daemonorops draco (dragon’s blood, Palmaceae) has resulted in the isolation of two new trinorditerpenes, 7β-13-dihydroxypodocarpa-8,11,13-trien-15-oic acid (1) and 7α-13-dihydroxypodocarpa-8,11,13-trien-15-oic acid (2), along with ten previously described abietane diterpenes, 7β-15-dihydroxydehydroabietic acid (3), 7α-15-dihydroxydehydroabietic acid (4), 15-hydroxydehydroabietic acid (5), 7-oxodehydroabietic acid (6), dehydroabietic acid (7), 15-hydroxyabietic acid (8), 12α-hydroxyabietic acid (9), abietic acid (10), 7,13,15-abietatrien-18-oic acid (11), and cephasinene B (12). The structures of 1 and 2 were elucidated using spectroscopic techniques, including HR-ESIMS and 1D/2D NMR. The absolute configurations were determined by comparing the experimental electronic circular dichroism (ECD) spectra with the calculated ECD data based on time-dependent density functional theory. The bioactivity of the extracts, fractions, and isolated compounds was assessed in oxidative stress-induced mesenchymal stromal cells (MSCs). The crude extract and the hexanes, ethyl acetate, and aqueous fractions exhibited high potency against oxidative stress-induced apoptosis of MSCs. Among the isolated compounds, compounds 1 (3 μM) and 10 (100 μM) demonstrated good recovery of MSCs against oxidative stress.  相似文献   

14.
Transient receptor potential melastatin 7 (TRPM7) is a Ca2+- and Mg2+-permeable nonselective cation channel that contains a unique carboxyl-terminal serine/threonine protein kinase domain. It has been reported that reactive oxygen species associated with hypoxia or ischemia activate TRPM7 current and then induce Ca2+ overload resulting in neuronal cell death in the brain. In this study, we aimed to investigate the molecular mechanisms of TRPM7 regulation by hydrogen peroxide (H2O2) using murine TRPM7 expressed in HEK293 cells. Using the whole-cell patch-clamp technique, it was revealed that the TRPM7 current was inhibited, not activated, by the application of H2O2 to the extracellular solution. This inhibition was not reversed after washout or treatment with dithiothreitol, suggesting irreversible oxidation of TRPM7 or its regulatory factors by H2O2 under whole-cell recording. Application of an electrophile, N-methylmaleimide (NMM), which covalently modifies cysteine residues in proteins, also inhibited TRPM7 current irreversibly. The effects of H2O2 and NMM were dependent on free [Mg2+]i; the inhibition was stronger when cells were perfused with higher free [Mg2+]i solutions via pipette. In addition, TRPM7 current was not inhibited by H2O2 when millimolar ATP was included in the intracellular solution, even in the presence of substantial free [Mg2+]i, which is sufficient for TRPM7 inhibition by H2O2 in the absence of ATP. Moreover, a kinase-deficient mutant of TRPM7 (K1645R) was similarly inhibited by H2O2 just like the wild-type TRPM7 in a [Mg2+]i- and [ATP]i-dependent manner, indicating no involvement of the kinase activity of TRPM7. Thus, these data suggest that oxidative stress inhibits TRPM7 current under pathological conditions that accompany intracellular ATP depletion and free [Mg2+]i elevation.  相似文献   

15.
Yao H  Tang X  Shao X  Feng L  Wu N  Yao K 《Cell research》2007,17(6):565-571
The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.  相似文献   

16.
17.
18.
Zhang M  Zhang BH  Chen L  An W 《Cell research》2002,12(2):123-132
To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of H  相似文献   

19.
Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.  相似文献   

20.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced from transgenic Nicotiana tabacum cells. The application of osmotic stress through the addition of 90 g/l mannitol to the plant cell medium enhanced the maximum extracellular GM-CSF concentration from 76 g/l to 130 g/l (1.7-fold increase). The addition of bovine serum albumin (BSA), along with mannitol, further increased the maximum extracellular GM-CSF concentration by as much as 2.5-fold over the control. GM-CSF degradation studies in conditioned medium demonstrated that mannitol and BSA both stabilize the GM-CSF protein. The addition of gelatin together with mannitol to the plant cell medium also enhanced the maximum extracellular GM-CSF concentration and stability over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号