共查询到20条相似文献,搜索用时 15 毫秒
1.
Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo 总被引:4,自引:0,他引:4
下载免费PDF全文

Qing K Li W Zhong L Tan M Hansen J Weigel-Kelley KA Chen L Yoder MC Srivastava A 《Journal of virology》2003,77(4):2741-2746
The use of adeno-associated virus type 2 (AAV) vectors has gained attention as a potentially useful alternative to the more commonly used retrovirus and adenovirus vectors for human gene therapy. However, the transduction efficiency of AAV vectors varies greatly in different cells and tissues in vitro and in vivo. We have documented that a cellular protein that binds the immunosuppressant drug FK506, termed the FK506-binding protein (FKBP52), interacts with the single-stranded D sequence within the AAV inverted terminal repeats, inhibits viral second-strand DNA synthesis, and consequently limits high-efficiency transgene expression (K. Qing, J. Hansen, K. A. Weigel-Kelley, M. Tan, S. Zhou, and A. Srivastava, J. Virol., 75: 8968-8976, 2001). FKBP52 can be phosphorylated at both tyrosine and serine/threonine residues, but only the phosphorylated forms of FKBP52 interact with the D sequence. Furthermore, the tyrosine-phosphorylated FKBP52 inhibits AAV second-strand DNA synthesis by greater than 90%, and the serine/threonine-phosphorylated FKBP52 causes approximately 40% inhibition, whereas the dephosphorylated FKBP52 has no effect on AAV second-strand DNA synthesis. In the present study, we have identified that the tyrosine-phosphorylated form of FKBP52 is a substrate for the cellular T-cell protein tyrosine phosphatase (TC-PTP). Deliberate overexpression of the murine wild-type (wt) TC-PTP gene, but not that of a cysteine-to-serine (C-S) mutant, caused tyrosine dephosphorylation of FKBP52, leading to efficient viral second-strand DNA synthesis and resulting in a significant increase in AAV-mediated transduction efficiency in HeLa cells in vitro. Both wt and C-S mutant TC-PTP expression cassettes were also used to generate transgenic mice. Primitive hematopoietic stem/progenitor cells from wt TC-PTP-transgenic mice, but not from C-S mutant TC-PTP-transgenic mice, could be successfully transduced by recombinant AAV vectors. These studies corroborate the fact that tyrosine phosphorylation of the cellular FKBP52 protein strongly influences AAV transduction efficiency, which may have important implications in the optimal use of AAV vectors in human gene therapy. 相似文献
2.
Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts 总被引:6,自引:0,他引:6
Adeno-associated virus type 2 (AAV) is a single-stranded-DNA-containing, nonpathogenic human parvovirus that is currently in use as a vector for human gene therapy. However, the transduction efficiency of AAV vectors in different cell and tissue types varies widely. In addition to the lack of expression of the viral receptor and coreceptors and the rate-limiting viral second-strand DNA synthesis, which have been identified as obstacles to AAV-mediated transduction, we have recently demonstrated that impaired intracellular trafficking of AAV inhibits high-efficiency transduction of the murine fibroblast cell line, NIH 3T3 (J. Hansen, K. Qing, H. J. Kwon, C. Mah, and A. Srivastava, J. Virol. 74:992-996, 2000). In this report, we document that escape of AAV from the endocytic pathway in NIH 3T3 cells is not limited but processing within endosomes is impaired compared with that observed in the highly permissive human cell line 293. While virions were found in both early and late endosomes or lysosomes of infected 293 cells, they were localized predominantly to the early endosomes in NIH 3T3 cells. Moreover, treatment of cells with bafilomycin A1 (Baf), an inhibitor of the vacuolar H(+)-ATPase and therefore of endosomal-lysosomal acidification, decreased the transduction of 293 cells with a concomitant decrease in nuclear trafficking of AAV but had no effect on NIH 3T3 cells. However, after exposure of NIH 3T3 cells to hydroxyurea (HU), a compound known to increase AAV-mediated transduction in general, virions were detected in late endosomes and lysosomes, and these cells became sensitive to Baf-mediated inhibition of transduction. Thus, HU treatment overcomes defective endocytic processing of AAV in murine fibroblasts. These studies provide insights into the underlying mechanisms of intracellular trafficking of AAV in different cell types, which has implications in the optimal use of AAV as vectors in human gene therapy. 相似文献
3.
Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation. 总被引:1,自引:0,他引:1
下载免费PDF全文

S Ponnazhagan P Mukherjee X S Wang K Qing D M Kube C Mah C Kurpad M C Yoder E F Srour A Srivastava 《Journal of virology》1997,71(11):8262-8267
4.
Novel Tat-encoding bicistronic human immunodeficiency virus type 1-based gene transfer vectors for high-level transgene expression
下载免费PDF全文

We describe bicistronic single-exon Tat (72-amino-acid Tat [Tat72])- and full-length Tat (Tat86)-encoding gene transfer vectors based on human immunodeficiency virus type 1 (HIV-1). We created versions of these vectors that were rendered Rev independent by using the constitutive transport element (CTE) from Mason-Pfizer monkey virus (MPMV). Tat72-encoding vectors performed better than Tat86-expressing vectors in gene transfer experiments. CTE-containing vectors, produced in a Rev-independent packaging system, had gene transfer efficiencies nearly equivalent to those produced using a combination RNA transport (CTE and Rev-Rev response element)-based packaging system. The Tat72-encoding vectors could be efficiently transduced into a variety of cell types, showed higher levels of transgene expression than vectors with the simian cytomegalovirus immediate-early or the simian virus 40 early promoter, and provide an alternative to HIV-1 vectors with internal promoters. 相似文献
5.
Adeno-associated virus type 2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo. 总被引:4,自引:2,他引:4
下载免费PDF全文

Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, is gaining attention as a vector for potential use in human gene therapy. We and others have described AAV-mediated beta-globin gene transfer and expression in established human and murine erythroleukemia cell lines in vitro. However, successful AAV-mediated globin gene transduction of hematopoietic stem cells and long-term expression in vivo in progeny cells have not been documented. We report here that infection of murine hematopoietic bone marrow cells ex vivo with a recombinant AAV vector containing the genomic copy of a normal human globin gene followed by transplantation of these cells into lethally irradiated congenic mice resulted in efficient gene transfer into hematopoietic cells with long-term repopulating ability as detected by the presence of the human globin gene sequences in bone marrow and spleen in primary recipient mice for at least 6 months. Long-term expression of the human globin gene was also detected in bone marrow, but not in spleen, in primary recipient mice. Furthermore, in secondary-transplant experiments, we were also able to document the presence as well as expression of the transduced human globin gene in mouse bone marrow for up to 3 months. These results provide further support for potential use of the AAV-based vector system in gene therapy of human hemoglobinopathies in general and sickle-cell anemia and beta-thalassemia in particular. 相似文献
6.
Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy 总被引:6,自引:0,他引:6
下载免费PDF全文

Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies. 相似文献
7.
Adeno-associated virus type 2-mediated transfer of ecotropic retrovirus receptor cDNA allows ecotropic retroviral transduction of established and primary human cells. 总被引:1,自引:0,他引:1
下载免费PDF全文

K Qing T Bachelot P Mukherjee X S Wang L Peng M C Yoder P Leboulch A Srivastava 《Journal of virology》1997,71(7):5663-5667
The cellular receptors that mediate binding and internalization of retroviruses have recently been identified. The concentration and accessibility of these receptors are critical determinants in accomplishing successful gene transfer with retrovirus-based vectors. Murine retroviruses containing ecotropic glycoproteins do not infect human cells since human cells do not express the receptor that binds the ecotropic glycoproteins. To enable human cells to become permissive for ecotropic retrovirus-mediated gene transfer, we have developed a recombinant adeno-associated virus type 2 (AAV) vector containing ecotropic retroviral receptor (ecoR) cDNA under the control of the Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter (vRSVp-ecoR). Established human cell lines, such as HeLa and KB, known to be nonpermissive for murine ecotropic retroviruses, became permissive for infection by a retroviral vector containing a bacterial gene for resistance to neomycin (RV-Neo(r)), with a transduction efficiency of up to 47%, following transduction with vRSVp-ecoR, as determined by the development of colonies that were resistant to the drug G418, a neomycin analog. No G418-resistant colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. Southern and Northern blot analyses revealed stable integration and long-term expression, respectively, of the transduced murine ecoR gene in clonal isolates of HeLa and KB cells. Similarly, ecotropic retrovirus-mediated Neo(r) transduction of primary human CD34+ hematopoietic progenitor cells from normal bone marrow was also documented, but only following infection with vRSVp-ecoR. The retroviral transduction efficiency was approximately 7% without prestimulation and approximately 14% with prestimulation of CD34+ cells with cytokines, as determined by hematopoietic clonogenic assays. No G418-resistant progenitor cell colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. These results suggest that sequential transduction of primary human cells with two different viral vectors may overcome limitations encountered with a single vector. Thus, the combined use of AAV- and retrovirus-based vectors may have important clinical implications for ex vivo and in vivo human gene therapy. 相似文献
8.
9.
10.
目的通过FKBP52基因敲除小鼠模型探索FKBP52在小鼠前列腺发育过程中的作用。方法分别对胚胎第17.5天、新生的和出生后3周的野生型和FKBP52基因敲除小鼠的前列腺进行切片HE染色,观察不同发育时期里野生型和FKBP52基因敲除小鼠前列腺发育的异同。结果(1)小鼠前列腺发育的起始不依赖于FKBP52基因的参与;(2)随着胚胎的发育,FKBP52在雄鼠前列腺发育中的作用逐渐显现出来,即FKBP52的缺失会导致前列腺叶发育受阻,最终不能形成成熟的前列腺。结论FKBP52在小鼠前列腺的发育过程中具有重要作用,它不参与前列腺的发育起始过程,但其缺失会导致前列腺发育受阻,即不能形成成熟的前列腺。 相似文献
11.
12.
13.
Hata S Koyama AH Shiota H Adachi A Goshima F Nishiyama Y 《Microbes and infection / Institut Pasteur》1999,1(8):601-607
In order to determine the ability of herpes simplex virus type 2 (HSV-2) to suppress apoptosis, we examined the effect of HSV-2 infection on apoptosis induced in HEp-2 cells by treatment with 1 M sorbitol. Although a wild-type strain of HSV-2 induced apoptosis in a significant fraction of the infected cells, HSV-2 could suppress sorbitol-induced apoptosis in a manner similar to that of herpes simplex virus type 1 (HSV-1), indicating that HSV-2, like HSV-1, has an antiapoptosis gene. Characterization of the cells infected with a US3-deletion mutant of HSV-2 revealed the necessity of a US3 gene in the antiapoptotic activity of this virus. 相似文献
14.
15.
16.
Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer 总被引:12,自引:0,他引:12
下载免费PDF全文

Zabner J Seiler M Walters R Kotin RM Fulgeras W Davidson BL Chiorini JA 《Journal of virology》2000,74(8):3852-3858
In the genetic disease cystic fibrosis, recombinant adeno-associated virus type 2 (AAV2) is being investigated as a vector to transfer CFTR cDNA to airway epithelia. However, earlier work has shown that the apical surface of human airway epithelia is resistant to infection by AAV2, presumably as a result of a lack of heparan sulfate proteoglycans on the apical surface. This inefficiency can be overcome by increasing the amount of vector or by increasing the incubation time. However, these interventions are not very practical for translation into a therapeutic airway-directed vector. Therefore, we examined the efficiency of other AAV serotypes at infecting human airway epithelia. When applied at low multiplicity of infection to the apical surface of differentiated airway epithelia we found that a recombinant AAV5 bound and mediated gene transfer 50-fold more efficiently than AAV2. Furthermore, in contrast to AAV2, AAV5-mediated gene transfer was not inhibited by soluble heparin. Recombinant AAV5 was also more efficient than AAV2 in transferring beta-galactosidase cDNA to murine airway and alveolar epithelia in vivo. These data suggest that AAV5-derived vectors bind and mediate gene transfer to human and murine airway epithelia, and the tropism of AAV5 may be useful to target cells that are not permissive for AAV2. 相似文献
17.
Background
Enzyme replacement therapy (ERT) with α-galactosidase A (α-Gal A) is currently the most effective therapeutic strategy for patients with Fabry disease, a lysosomal storage disease. However, ERT has limitations of a short half-life, requirement for frequent administration, and limited efficacy for patients with renal failure. Therefore, we investigated the efficacy of recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for a Fabry disease mouse model and compared it with that of ERT.Methods
A pseudotyped rAAV2/8 vector encoding α-Gal A cDNA (rAAV2/8-hAGA) was prepared and injected into 18-week-old male Fabry mice through the tail vein. The α-Gal A expression level and globotriaosylceramide (Gb3) levels in the Fabry mice were examined and compared with Fabry mice with ERT. Immunohistochemical and ultrastructural studies were conducted.Results
Treatment of Fabry mice with rAAV2/8-hAGA resulted in the clearance of accumulated Gb3 in tissues such as liver, spleen, kidney, heart, and brain with concomitant elevation of α-Gal A enzyme activity. Enzyme activity was elevated for up to 60 weeks. In addition, expression of the α-Gal A protein was identified in the presence of rAAV2/8-hAGA at 6, 12, and 24 weeks after treatment. α-Gal A activity was significantly higher in the mice treated with rAAV2/8-hAGA than in Fabry mice that received ERT. Along with higher α-Gal A activity in the kidney of the Fabry mice treated with gene therapy, immunohistochemical studies showed more α-Gal A expression in the proximal tubules and glomerulus, and less Gb3 deposition in Fabry mice treated with this gene therapy than in mice given ERT. The α-gal A gene transfer significantly reduced the accumulation of Gb3 in the tubules and podocytes of the kidney. Electron microscopic analysis of the kidneys of Fabry mice also showed that gene therapy was more effective than ERT.Conclusions
The rAAV2/8-hAGA mediated α-Gal A gene therapy provided improved efficiency over ERT in the Fabry disease mouse model. Furthermore, rAAV2/8-hAGA-mediated expression showed a greater effect in the kidney than ERT.18.
19.
Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain 总被引:7,自引:0,他引:7
下载免费PDF全文

Epidemiological studies report that 80% of the population maintains antibodies (Ab) to wild-type (wt) adeno-associated virus type 2 (AAV2), with 30% expressing neutralizing Ab (NAb). The blood-brain barrier (BBB) provides limited immune privilege to brain parenchyma, and the immune response to recombinant AAV (rAAV) administration in the brain of a naive animal is minimal. However, central nervous system transduction in preimmunized animals remains unstudied. Vector administration may disrupt the BBB sufficiently to promote an immune response in a previously immunized animal. We tested the hypothesis that intracerebral rAAV administration and readministration would not be affected by the presence of circulating Ab to wt AAV2. Rats peripherally immunized with live wt AAV2 and naive controls were tested with single intrastriatal injections of rAAV2 encoding human glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Striatal readministration of rAAV2-GDNF was also tested in preimmunized and naive rats. Finally, serotype specificity of the immunization against wt AAV2 was examined by single injections of rAAV5-GFP. Preimmunization resulted in high levels of circulating NAb and prevented transduction by rAAV2 as assessed by striatal GDNF levels. rAAV2-GFP striatal transduction was also prevented by immunization, while rAAV5-GFP-mediated transduction, as assessed by stereological cell counting, was unaffected. Additionally, inflammatory markers were present in those animals that received repeated administrations of rAAV2, including markers of a cell-mediated immune response and cytotoxic damage. A live virus immunization protocol generated the circulating anti-wt-AAV Ab seen in this experiment, while human titers are commonly acquired via natural infection. Regardless, the data show that the presence of high levels of NAb against wt AAV can reduce rAAV-mediated transduction in the brain and should be accounted for in future experiments utilizing this vector. 相似文献
20.
Chilukuri N Duysen EG Parikh K Sun W Doctor BP Lockridge O Saxena A 《Chemico-biological interactions》2008,175(1-3):327-331
Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents, pesticide intoxication, and cocaine overdose. However, its widespread application is hampered by difficulties in large-scale production of the native protein from human plasma and/or availability as a recombinant protein suitable for use in vivo. This limitation may be resolved by in vivo delivery and expression of the Hu BChE gene. In this study, recombinant (r) adenoviruses (Ads) encoding full-length and truncated rHu BChEs were tested for in vivo expression in mice. Mice injected with these rAds intraperitoneally failed to express rHu BChE. However, a single tail vein injection of both rAds resulted in persistent high serum levels of rHu BChE in BChE knockout mice, which peaked on days 4/5 at 377+/-162U/ml for full-length rHu BChE and 574+/-143U/ml for truncated rHu BChE. These activity levels are orders of magnitude higher than 1.9U/ml of mouse BChE present in wild-type mouse serum. Thereafter, rHu BChE levels dropped rapidly and very little or no activity was detected in the serum 10 days post-virus administration. In conclusion, the present study demonstrates the potential of rAd-mediated Hu BChE gene therapy to counteract multiple lethal doses of chemical warfare nerve agent toxicity. 相似文献