首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
白菜自交不亲和性的荧光测定   总被引:6,自引:1,他引:6  
通过亲和指数法及荧光显微观察对白菜的自交不亲和性进行了测定。结果表明,白菜自交不亲和的反应部位在柱头,自花授粉后柱头表面产生明显的胼胝质反应。两种观测法的结果相吻合,荧光显微镜观察法准确、方便,可应用于白菜自交不亲和系的育种实践。  相似文献   

2.
菊花自交不亲和性初步研究   总被引:5,自引:0,他引:5  
以菊花品种杂交为对照,通过自交亲和指数、受精作用及自交有性过程荧光显微镜观察,对菊花自交不亲和性进行了研究。结果表明:菊花自交难以结实,具不亲和性;菊花自交不亲和的反应部位在雌蕊柱头,表现为花粉粒粘附少、萌发率低及诱导胼胝质生成,花粉管在柱头上出现各种异常现象而难以进入花柱。  相似文献   

3.
高等植物自交不亲和性的分子生物学   总被引:14,自引:0,他引:14  
自交不亲和性是大多数高等植物防止近亲繁殖的一种遗传屏障。它涉及受精时雄配子(花粉)和雌蕊之间的相互作用。目前,已经分离获得了编码控制雌蕊自交不亲和性的S基因。在孢子体型自交不亲和的芸苔属中,雌蕊S基因编码S位点糖蛋白(SLG)和S受体激酶(SRK)。它们可能与磷酸化和去磷酸化参与了的某种信号传递有关,最后导致自交花粉生长的抑制。在配子分配体型自交不亲和的茄科中,雌蕊S位点糖蛋白为一种核糖核酸酶,称  相似文献   

4.
植物自交不亲和性机理的研究罗光明,杨雅琴(江西中医学院药学系植物室,南昌330006)在自然条件下,任何植物在开花时,其雌性器官既可能接触种内的花粉,也可能同时接触异种的花粉,但是,只有具备一定遗传背景的个体之间才能实现亲和性的交配。在一般情况下,交...  相似文献   

5.
从细胞识别的角度概述芸苔属植物自交不亲和信号的产生和转导机制的研究进展。  相似文献   

6.
本文介绍甘蓝自交不亲和性的化学控制研究进展。  相似文献   

7.
十字花科植物自交不亲和性(SI)受墨位点(S-locus)编码的sRK和sCR控制,它们分别是柱头和花粉中的sI特异识别因子。野生型拟南芥不具有sI,而近来通过转基因手段将外源艘K—scR基因转入野生型拟南芥可以使其表现sI,由此建立了一个可用于十字花科sI研究的新型模式植物。本文综述了利用这种转基因拟南芥在SI机制及进化方面取得的进展,包括sI新基因的挖掘、候选基因功能分析和拟南芥生殖模式的转变等。  相似文献   

8.
植物自交不亲和性研究的文献计量学分析   总被引:1,自引:0,他引:1  
杨小华  顾焕全   《广西植物》1999,19(2):187-189
运用文献计量学原理和方法,对1991~1995年间有关植物自交不亲和性研究的文献进行计量分析,揭示了其中的动态规律和此项研究的发展趋势。  相似文献   

9.
基于S-核酸酶的自交不亲和性的分子机制   总被引:7,自引:0,他引:7  
自交不亲和性是一种广泛存在于显花植物中的种内生殖障碍,可以抑制近亲繁殖而促进异交。其中,以茄科、玄参科和蔷薇科为代表的配子体自交不亲和性是最常见的类型。这类自交不亲和性是由单一的多态性S-位点所控制。目前的研究发现这一位点至少包含两个自交不亲和反应特异性决定因子:花柱中的S-核酸酶和花粉中的SLF(S-Locus F-box)蛋白。该文将主要介绍并讨论基于S-核酸酶的自交不亲和性分子机制的研究进展。  相似文献   

10.
利用氨基酸分析快速测定甘蓝自交不亲和性   总被引:3,自引:0,他引:3  
刘宝敬  宋明 《Acta Botanica Sinica》1998,40(11):1028-1034
利用氨基酸分析方法,对甘蓝(BrasicaoleraceaL.var.capitata)自交不亲和系与亲和系的柱头和花粉蛋白质进行了研究。结果表明,自交不亲和系与亲和系的柱头和花粉氨基酸组分有显著差别。柱头中苏氨酸和酪氨酸含量以及花粉中甘氨酸和丙氨酸含量可以作为评价自交不亲和性的指标。鉴定标准:自交不亲和系柱头中苏氨酸含量高于0.223%,酪氨酸含量高于0.385%;花粉中甘氨酸含量高于1.593%,丙氨酸含量高于1.464%。亲和系柱头中苏氨酸含量低于0.185%,酪氨酸含量低于0.164%;花粉中甘氨酸含量低于1470%,丙氨酸含量低于1006%  相似文献   

11.
Antibiotic‐resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Sexual self-incompatibility in European pear (Pyrus communis L.) is controlled by a single locus (S-locus) encoding a polymorphic stylar ribonuclease (S-RNase) that is responsible for the female function in pollen–pistil recognition. In this study, genomic DNA sequences corresponding to five new S-RNase alleles (named S 20 , S 21 , S 22 , S 23 , and S 24 ) and to S m were characterized in European pear cultivars. Re-sequencing S q from ‘General Le Clerc’ showed this S-RNase to encode the same protein as S 12 . Based on these findings, a polymerase chain reaction (PCR)-based method was developed for the molecular typing of cultivars bearing 20 S-RNases (S 1 S 14 , S m , and S 20 S 24 ) using consensus and allele-specific primers. Genomic PCR with consensus primers amplified product sizes characteristic of the S-RNases S 1 , S 2 , S 4 , S 10 , S 13 , and S 20 . However, the allele groups S 3 /S 12 , S 6 /S 8 /S 11 /S 22 and S 5 /S 7 /S 9 /S 14 /S m /S 21 /S 23 /S 24 amplified PCR products of similar size. To discriminate between alleles within these groups, primers to specifically amplify each S-RNase were developed. Application of this approach in 19 cultivars with published S-alleles allowed re-evaluation of one of the alleles of ‘Passe Crassane,’ ‘Conference,’ and ‘Condo.’ Finally, this method was used to assign S-genotypes to 37 cultivars. Test crosses confirmed molecular results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Characterisation of multi-protein interactions in cellular networks can be achieved by optical microscopy using multidimensional single molecule fluorescence imaging. Proteins of different species, individually labelled with a single fluorophore, can be imaged as isolated spots (features) of different colour light in different channels, and their diffusive behaviour in cells directly measured through time. Challenges in data analysis have, however, thus far hindered its application in biology. A set of methods for the automated analysis of multidimensional single molecule microscopy data from cells is presented, incorporating Bayesian segmentation-based feature detection, image registration and particle tracking. Single molecules of different colours can be simultaneously detected in noisy, high background data with an arbitrary number of channels, acquired simultaneously or time-multiplexed, and then tracked through time. The resulting traces can be further analysed, for example to detect intensity steps, count discrete intensity levels, measure fluorescence resonance energy transfer (FRET) or changes in polarisation. Examples are shown illustrating the use of the algorithms in investigations of the epidermal growth factor receptor (EGFR) signalling network, a key target for cancer therapeutics, and with simulated data.  相似文献   

14.
Measurement of lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) activity in tissue extracts often poses problems due to the inhibitors released during homogenization. The present investigation provides a first report on the localization of lipase activity in viable plant protoplasts isolated from the cotyledons of germinating seeds of sunflower, cotton and peanut by fluorescence microscopy, using a lipase specific, 'glycerol-derived' synthetic substrate, i.e., 1,2-O-dilauryl-rac-3-glycero-glutaric acid-resorufin ester, commonly used for in vitro assays. Due to its lipophilicity, this chromogenic substrate readily permeates plasma membrane of plant protoplasts. Subsequent lipase action leads to cleavage of this substrate to release resorufin, which can be visualized due to emission of red fluorescence (max excitation – 567 nm; max emission – 584.6 nm) at its intracellular locations.  相似文献   

15.
We present a label-free detection of protein interaction between beta-galactosidase from Escherichia coli (Ecbeta-Gal) and monoclonal anti-Ecbeta-Gal using deep UV laser-based fluorescence lifetime microscopy. The native fluorescence from intrinsic tryptophan emission was observed after one-photon excitation at 266 nm. Applying the time-correlated single-photon counting (TCSPC) method, we investigated the mean fluorescence lifetime and lifetime distributions from tryptophan residues in Ecbeta-Gal protein, monoclonal anti-Ecbeta-Gal, and corresponding complex. The results demonstrate that deep UV laser-based fluorescence lifetime microscopy is useful for sensitive identification of biological macromolecules interaction using intrinsic fluorescence.  相似文献   

16.
Chromosomes undergoing meiosis are defined by a macromolecular protein assembly called the synaptonemal complex which holds homologs together and carries out important meiotic functions. By retaining the molecular specificity, multiplexing ability, and in situ imaging capabilities of fluorescence microscopy, but with vastly increased resolution, 3D-SIM and other superresolution techniques are poised to make significant discoveries about the structure and function of the synaptonemal complex. This review discusses recent developments in this field and poses questions approachable with current and future technology.  相似文献   

17.
18.
19.
The ability to study the structure and function of cell membranes and membrane components is fundamental to understanding cellular processes. This requires the use of methods capable of resolving structures with nanometer-scale resolution in intact or living cells. Although fluorescence microscopy has proven to be an extremely versatile tool in cell biology, its diffraction-limited resolution prevents the investigation of membrane compartmentalization at the nanometer scale. Near-field scanning optical microscopy (NSOM) is a relatively unexplored technique that combines both enhanced spatial resolution of probing microscopes and simultaneous measurement of topographic and optical signals. Because of the very small nearfield excitation volume, background fluorescence from the cytoplasm is effectively reduced, enabling the visualization of nano-scale domains on the cell membrane with single molecule detection sensitivity at physiologically relevant packing densities. In this article we discuss technological aspects concerning the implementation of NSOM for cell membrane studies and illustrate its unique advantages in terms of spatial resolution, background suppression, sensitivity, and surface specificity for the study of protein clustering at the cell membrane. Furthermore, we demonstrate reliable operation under physiological conditions, without compromising resolution or sensitivity, opening the road toward truly live cell imaging with unprecedented detail and accuracy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号