首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
2.
Programmed cell death during endosperm development   总被引:32,自引:0,他引:32  
The endosperm of cereals functions as a storage tissue in which the majority of starch and seed storage proteins are synthesized. During its development, cereal endosperm initiates a cell death program that eventually affects the entire tissue with the exception of the outermost cells, which differentiate into the aleurone layer and remain living in the mature seed. To date, the cell death program has been described for maize and wheat endosperm, which exhibits common and unique elements for each species. The progression of endosperm programmed cell death (PCD) in both species is accompanied by an increase in nuclease activity and the internucleosomal degradation of nuclear DNA, hallmarks of apoptosis in animals. Moreover, ethylene and abscisic acid are key to mediating PCD in cereal endosperm. The progression of the cell death program in developing maize endosperm follows a highly organized pattern whereas in wheat endosperm, PCD initiates stochastically. Although the essential characteristics of cereal endosperm PCD are now known, the molecular mechanisms responsible for its execution remain to be identified.  相似文献   

3.
Lin BY 《Genetics》1984,107(1):103-115
Maize kernels inheriting the indeterminate gametophyte mutant (ig) on the female side had endosperms that ranged in ploidy level from diploid (2x) to nonaploid (9x). In crosses with diploid males, only kernels of the triploid endosperm class developed normally. Kernels of the tetraploid endosperm class were half-sized but with well-developed embryos that regularly germinated. Kernels of endosperm composition other than triploid or tetraploid were abortive.-Endosperm ploidy level resulting from mating ig/ig x tetraploid Ig similarly was variable. Most endosperms started to degenerate soon after pollination and remained in an arrested state. Hexaploid endosperm was exceptional; it developed normally during the sequence of stages studied and accounted for plump kernels on mature ears. Since such kernels have diploid maternal tissues (pericarp) but triploid embryos, the present finding favors the view that endosperm failure or success in such circumstances is governed by conditions within the endosperm itself.-Whereas tetraploid endosperm consisting of three maternal genomes and one paternal genome is slightly reduced in size but supports viable seed development, that endosperm having two maternal and two paternal chromosome sets was highly defective and conditioned abortion. Thus, development of maize endosperm evidently is affected by the parental source of its sets of chromosomes.  相似文献   

4.
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome‐wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular‐type endosperm development are lacking. Using laser‐assisted microdissection, we characterized parent‐specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear‐type endosperm. Forty‐two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression‐level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular‐ and nuclear‐type endosperm.  相似文献   

5.
6.
7.
Although maize endosperm undergoes programmed cell death during its development, it is not known whether this developmental feature is common to cereals or whether it arose inadvertently from the selection process that resulted in the enlarged endosperm of modern maize. Examination of wheat endosperm during its development revealed that this tissue undergoes a programmed cell death that shares features with the maize program but differs in some aspects of its execution. Cell death initiated and progressed stochastically in wheat endosperm in contrast to maize where cell death initiates within the upper central endosperm and expands outward. After a peak of ethylene production during early development, wheat endosperm DNA underwent internucleosomal fragmentation that was detectable from mid to late development. The developmental onset and progression of DNA degradation was regulated by the level of ethylene production and perception. These observations suggest that programmed cell death of the endosperm and regulation of this program by ethylene is not unique to maize but that differences in the execution of the program appear to exist among cereals.  相似文献   

8.
The endosperm is a barrier for radicle protrusion of many angiosperm seeds. Rupture of the testa (seed coat) and rupture of the endosperm are two sequential events during the germination of Lepidium sativum L. and Arabidopsis thaliana (L.) Heyhn. Abscisic acid (ABA) specifically inhibits the endosperm rupture of these two closely related Brassicaceae species. Lepidium seeds are large enough to allow the direct measurement of endosperm weakening by the puncture force method. We found that the endosperm weakens prior to endosperm rupture and that ABA delays the onset and decreases the rate of this weakening process in a dose-dependent manner. An early embryo signal is required and sufficient to induce endosperm weakening, which afterwards appears to be an organ-autonomous process. Gibberellins can replace this embryo signal; de novo gibberellin biosynthesis occurs in the endosperm and weakening is regulated by the gibberellin/ABA ratio. Our results suggest that the control of radicle protrusion during the germination of Brassicaceae seeds is mediated, at least in part, by endosperm weakening. We propose that Lepidium is an emerging Brassicaceae model system for endosperm weakening and that the complementary advantages of Lepidium and Arabidopsis can be used in parallel experiments to investigate the molecular mechanisms of endosperm weakening.  相似文献   

9.
Mapping quantitative trait loci underlying triploid endosperm traits   总被引:18,自引:0,他引:18  
Xu C  He X  Xu S 《Heredity》2003,90(3):228-235
Endosperm, which is derived from two polar nuclei fusing with one sperm, is a triploid tissue in cereals. Endosperm tissue determines the grain quality of cereals. Improving grain quality is one of the important breeding objectives in cereals. However, current statistical methods for mapping quantitative trait loci (QTL) under diploid genetic control have not been effective for dealing with endosperm traits because of the complexity of their triploid inheritance. In this paper, we derive for the first time the conditional probabilities of F(3) endosperm QTL genotypes given different flanking marker genotypes in F(2) plants. Using these probabilities, we develop a multiple linear regression method implemented via the iteratively reweighted least-squares (IRWLS) algorithm and a maximum likelihood method (ML) implemented via the expectation-maximization (EM) algorithm to map QTL underlying endosperm traits. We use the mean value of endosperm traits of F(3) seeds as the dependent variable and the expectations of genotypic indicators for additive and dominance effect of a putative QTL flanked by a pair of markers as independent variables for IRWLS mapping. However, if an endosperm trait is measured quantitatively using a single endosperm sample, the ML mapping method can be used to separate the two dominance effects. Efficiency of the methods is verified through extensive Monte Carlo simulation studies. Results of simulation show that the proposed methods provide accurate estimates of both the QTL effects and locations with very high statistical power. With these methods, we are now ready to map endosperm traits, as we can for regular quantitative trait under diploid control.  相似文献   

10.
Kao CH 《Genetics》2004,167(4):1987-2002
Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

11.
We have analysed the chromosome organization in endosperm and embryo of bread wheat (Triticum aestivum L.), in order to compare these tissues with developing anthers, in which the centromeres associate, and the developing root xylem vessel cells, in which the chromosomes endoreduplicate to become polytene and associate via their centromeres. Both endosperm and embryo showed a typical Rabl configuration and a degree of non-homologous centromere association and the endosperm also showed extensive telomere association. Wheat endosperm is initially triploid and during its development a percentage of the nuclei increase their DNA content to 6C and 12C. 6C nuclei showed twice as many centromeres as 3C nuclei and the centromere number increased further in 12C nuclei. The higher the C-content of a nucleus the more the telomeres associated in endosperm. The vast majority of 12C nuclei showed six rye chromosome arms, although a few showed three associated groups of rye chromosome arms. This means that during endosperm development wheat nuclei show both polyploidization and polytenization.  相似文献   

12.
Activity of starch synthase and the amylose content in rice endosperm   总被引:30,自引:0,他引:30  
The content of amylose in endosperm of non-waxy japonica rice (Oryza sativa cv Akitakomachi) was increased by lowering the growth temperature from 25° to 15° during the ripening period. The activities of sucrose synthase, ADPglucose pyrophosphorylase, starch branching enzyme (Q-enzyme) and soluble starch synthase in endosperm developed at 15° were lower than or similar to those at 25°, when compared on a endosperm basis at the similar ripening stage. In contrast, the activity of starch granule-bound starch synthase, which is considered to be indispensable for amylose synthesis, was higher by 3–3.5-fold in the endosperm developed at the low temperature than that at the high ambient temperature. The results suggest that the low temperature specifically accelerates the expression of the bound starch synthase gene (waxy gene) in rice endosperm, which resulted in elevated amylose biosynthesis in the endosperm when developed at lower temperatures.  相似文献   

13.
The response of developing maize (Zea mays L.) endosperm to elevated levels of abscisic acid (ABA) was investigated. Maize kernels and subtending cob sections were excised at 5 days after pollination (DAP) and placed in culture with or without 90 micromolar (±)-ABA in the medium. A decreased number of cells per endosperm was observed at 10 DAP (and later sampling times) in kernels cultured in medium containing ABA from 5 DAP, and in kernels transferred at 8 DAP to medium containing ABA, but not in kernels transferred at 11 DAP to medium containing ABA. The number of starch granules per endosperm was decreased in some treatments, but the reduction, when apparent, was comparable to the decreased number of endosperm cells. The effect on endosperm fresh weight was slight, transient, and appeared to be secondary to the effect on cell number. Mature endosperm dry weight was reduced when kernels were cultured continuously in medium containing ABA. Endosperm (+)-ABA content of kernels cultured in 0, 3, 10, 30, 100, or 300 micromolar (±)-ABA was measured at 10 DAP by indirect ELISA using a monoclonal antibody. Content of (+)-ABA in endosperms correlated negatively (R = −0.92) with endosperm cell number. On the basis of these studies we propose that during early kernel development, elevated levels of ABA decrease the rate of cell division in maize endosperm which, in turn, could limit the storage capacity of the kernel.  相似文献   

14.
The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-β-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-β-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.  相似文献   

15.
Lin BY 《Genetics》1982,100(3):475-486
Among 38 reciprocal translocations between the maize B chromosome and the proximal region of the long arm of chromosome 10 were six interchanges associated with reduced endosperm development. These six have breakpoints that are the most proximal of the set and constitute a graded series with those broken nearer the centromere which have the most abnormal phenotypes. The group of six defines three major regions that produce the endosperm effects. The remaining 32 translocations reduce kernel size very slightly, suggesting the presence of a fourth region distal to all break-points.-The affected class of kernels lacks a paternally derived representative of that segment of 10L translocated to the B centromeric element (B(10) chromosome; 10 10 B(10)). An accompanying class of kernel in which the paternal B(10) chromosome is duplicated in the endosperm (10 10 10(B) B(10) B(10)) is normal. Kernels of the same endosperm constitution synthesized by introducing both 10 and B(10) maternally, however, are defective, resembling 10 10 10(B). Maternal B(10)'s are therefore unable to compensate for the absence of a paternal B(10). Clearly expression of the 10L genes involved supports normal endosperm growth only following pollen transmission.  相似文献   

16.
17.
β-aspartokinase (EC 2.7.2.4.) has been isolated from the developing endosperm (30 days post-pollination) of Zea mays (cv. Pioneer 3145). Enzyme activity was dependent upon ATP, Mg++ or Mn++, aspartate, and protein concentration. Double reciprocal plots of velocity vs. aspartate concentrations deviated from a straight line at low aspartate concentration indicating two apparent Km's of 0.5 and 6.6 mM. Enzyme activity was inhibited by lysine but not by methionine or threonine. The endosperm-derived β-aspartokinase behaved similarly to enzyme isolated from 6-day-old etiolated shoot tissue. The presence of β-aspartokinase in developing endosperm provides new insight into the source of the aspartate-derived amino acids in maize endosperm.  相似文献   

18.
Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum were cloned, and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was also expressed in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 d after pollination. This differed from barley and maize, in which SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.  相似文献   

19.
The parental investment in angiosperms comprises the endosperm, a nutrient reserve that is used during seed development. The endosperm contains genes from both parents. The most common endosperm form is the 3n Polygonum -type with more maternal genetic influence than paternal, i.e. with two maternal nuclei and one paternal nucleus. The evolutionary original state is thought to be a diploid endosperm with equal influence of the parents. We focus on the evolution of the triploid endosperm and show that a gene for triploid endosperm would have an initial advantage in a population of diploid endosperm type plants, and increase to fixation. We assume that endosperm amount is controlled by endosperm genes. Then a gene causing triploid endosperm will increase the influence of the mother plant on parental investment. The production of endosperm with two copies of the maternal genes will modify the inheritance of endosperm amount and cause an increased production of seeds.  相似文献   

20.
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号