首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

2.
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.  相似文献   

3.
Omega-3 fatty acids in cellular membranes: a unified concept   总被引:13,自引:0,他引:13  
The Omega-3 fatty acid DHA (docosahexaenoic acid, 22:6) and its sister molecule EPA (eicosapentaenoic acid, 20:5) are highlighted here. These highly unsaturated fatty acids are widespread in nature, especially in the marine environment, and are essential in membranes ranging from deep sea bacteria to human neurons. Studies of DHA/EPA in bacteria have led to a working model on the structural roles of these molecules and are described in this review. The main points are: (a) genomic analysis shows that genes encoding the DHA/EPA pathways are similar, supporting the idea that structural roles in bacteria might be similar, (b) biochemical analysis shows that DHA and EPA are produced in bacteria by a polyketide process distinct from the pathway of plants and animals; this allows DHA and EPA to be produced in anaerobic or oxygen-limited environments, (c) regulatory systems triggered by temperature and pressure have been identified and studied, and add to the understanding of the roles of these molecules, (d) DHA/EPA bacteria are located almost exclusively in the marine environment, raising the prospect of an important linkage between membrane processes and marine conditions, (e) physiological studies of an EPA recombinant of E. coli show that EPA phospholipids contribute essential fluidity to the bilayer and that an EPA-enriched membrane supports a respiratory lifestyle dependent on proton bioenergetics; the EPA recombinant displays other physiological properties likely attributed to high levels of EPA in the bilayer, and (f) chemical studies such as chemical dynamic modeling support the idea that DHA and presumably EPA contribute hyperfluidizing properties to the membrane. We hypothesize that DHA/EPA phospholipids contribute fluidity and other properties to the bilayer which distinguish these highly unsaturated chains from monounsaturates and polyunsaturates such as 18:2 and 18:3. We further hypothesize that the structural properties of DHA/EPA functioning in bacteria are also harnessed by higher organisms for enhancing crucial membrane processes including photosynthesis and energy transduction.  相似文献   

4.
The important role of the omega-3 fatty acids in the pathophysiology and treatment of bipolar disorder is now supported by a substantial body of indirect and direct evidence. This paper will describe the clinical and pharmacological features of bipolar disorder, review the available data regarding omega-3 fatty acids in bipolar disorder and provide recommendations for future research.  相似文献   

5.
Pseudomonas aeruginosa is a gram-negative bacilli frequently encountered in human pathology. This pathogen is involved in a large number of nosocomial infections and chronic diseases. Herein we investigated the effects of polyunsaturated fatty acids (PUFA) in chronic Pseudomonas aeruginosa lung infection. C57BL/6 mice were fed for 5 wk with specifically designed diets with high contents in either omega-3 (omega-3) or omega-6 PUFA and compared to a control diet. P. aeruginosa included in agarose beads was then instilled intratracheally, and the animals were studied for 7 days. On the 4th day, the mice fed with the omega-3 diet had a higher lean body mass gain and a lower omega-6:omega-3 ratio of fatty acids extracted from the lung tissue compared with the other groups (P < 0.05). The omega-3 group had the lowest mortality. Distal alveolar fluid clearance (DAFC) as well as the inflammatory response and the cellular recruitment were higher in the omega-3 group on the 4th day. The effect on DAFC was independent of alpha-epithelial Na(+) channels (alpha-ENaC), beta-ENaC, and alpha(1)-Na-K-ATPase mRNA expressions, which were not altered by the different diets. In conclusion, a diet enriched in omega-3 PUFA can change lung membrane composition and improve survival in chronic pneumonia. This effect on survival is probably multifactorial involving the increased DAFC capacity as well as the optimization of the initial inflammatory response. This work suggests that a better control of the omega-6/omega-3 PUFA balance may represent an interesting target in the prevention and/or control of P. aeruginosa infection in patients.  相似文献   

6.
Omega-3 fatty acids and antioxidants in edible wild plants   总被引:2,自引:0,他引:2  
Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.  相似文献   

7.
The maintenance of optimal cognitive function is a central feature of healthy aging. Impairment in brain glucose uptake is common in aging associated cognitive deterioration, but little is known of how this problem arises or whether it can be corrected or bypassed. Several aspects of the challenge to providing the brain with an adequate supply of fuel during aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, especially docosahexaenoic acid (DHA), is becoming increasingly associated with several forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level seems to be an important regulator of brain glucose uptake, possibly by affecting the activity of some but not all the glucose transporters. DHA synthesis from either alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether these DHA precursors are likely to be helpful in maintaining cognition during aging. We speculate that ALA and EPA may well have useful supporting roles in maintaining brain function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass problems of impaired glucose access to the brain during aging. Hence, it may be time to consider whether the main omega-3 fatty acids have distinct but complementary roles in brain function.  相似文献   

8.
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.  相似文献   

9.
10.
Omega-3 fatty acids, such as, DHA and EPA, have well established beneficial effects on human health, but their action mechanisms remain unknown. Recent pharmacological studies have suggested several molecular targets for the anti-inflammatory effects of omega-3 fatty acids, namely, nuclear receptor PPARγ and the G protein-coupled receptor GPR120. Furthermore, the conversions of omega-3 fatty acids to anti-inflammatory and pro-resolving resolvins and protectins and the identifications of putative target GPCRs, ChemR23, BLT?, ALX/FPR2, and GPR32, have drawn great attention. In addition, the pharmacology of omega-3 fatty acids is now under scrutiny. However, questions remain to be answered regarding the in vivo effects of omega-3 fatty acids at the molecular level. In this review, anti-inflammatory effects of omega-3 fatty acids are discussed from the viewpoint of molecular pharmacology, particularly with respect to the above-mentioned GPCRs.  相似文献   

11.
The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA + DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA + DHA diet. Supplementation with adequate ALA or EPA + DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA + DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.  相似文献   

12.
Several lines of evidence suggest that omega-3 fatty acids may be important in the pathophysiology, treatment or prevention of bipolar disorder (BD). Electronic and manual searches were conducted in order to review the literature relevant to the etiology and treatment of BDs with omega-3 fatty acids. We also present data from a randomized, double-blind, placebo-controlled pilot study conducted at three sites (N = 10) comparing an omega-3 fatty acid (docosahexaenoic acid, DHA) versus placebo, added to psychosocial treatment for women with BD who chose to discontinue standard pharmacologic treatment while attempting to conceive. While some epidemiologic and preclinical data support the role of omega-3 fatty acids in BD, clinical trials to date have yielded conflicting results. In our pilot study of 10 Caucasian women taking DHA while attempting to conceive (BP1 = 9, BPII = 1), age 27-42 years, DHA was well tolerated and suggests that a larger study would be feasible. The elucidation of the potential role of omega-3 fatty acids as a treatment for BD requires further study. The current data are not sufficient to support a recommendation of monotherapy treatment as a substitute for standard pharmacologic treatments. However, judicious monotherapy in selected clinical situations, or adjunctive use, may be warranted pending further data from adequately powered controlled clinical trials. Our pilot trial of DHA in women who plan to stop conventional psychotropics in order to conceive suggests that such trials are feasible.  相似文献   

13.
Omega-3 fatty acids which are abundant in fish oil improve the prognosis of several chronic inflammatory diseases that are characterized by leukocyte-mediated tissue injury. The omega-3 fatty acids, such as eicosapentaenoic acid (EPA), are highly polyunsaturated and readily undergo oxidation. Our data suggest that the beneficial effects of fish oil may be due to the oxidative modification of omega-3 fatty acids. The oxidized products inhibit leukocyte adhesion receptor expression and leukocyte-endothelial interactions. Oxidized EPA is a potent inhibitor of leukocyte interactions with the endothelium compared to native EPA, both in vitro and in an in vivo context of inflammation. The effects of oxidized EPA are mediated through activation of PPARalpha and subsequent inhibition of NF-kappaB, leading to the down-regulation of leukocyte adhesion receptor expression required for leukocyte-endothelial interactions. We propose that oxidation of EPA and its activation of PPARalpha and subsequent inhibition of NF-kappaB is the underlying mechanism for the beneficial effects of fish oil.  相似文献   

14.
The impact of the Western diet on chronic diseases, such as cancer, has been well recognized. Dietary saturated and trans fatty acids have been found to play a negative role in obesity, heart disease, diabetes and cancer, while the beneficial health effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) have become widely accepted. Despite the current knowledge, n-3 PUFA intake is still under recommended daily intake levels in Europe. As wild fish, currently still the major source of n-3 PUFA, are facing a decline, alternative sources such as marine and plant (both natural and transgenic) sources are being explored. In this review we aim to provide an overview of the current biological sources of n-3 PUFAs, their part in normal physiology, as well as their emerging application in supportive cancer care, and more specifically in cancer cachexia, therapy-related neurocognitive dysfunction and distress. In addition, we provide a brief summary of currently ongoing clinical trials examining potential beneficial effects of n-3 PUFAs in reducing cancer(therapy)-related side effects, and describe future research directions.  相似文献   

15.
Docosahexaenoic acid (DHA), a member of the n-3 fatty acid family present in fish oil, has several positive effects on bovine sperm, including membrane integrity, motility and viability, as well as cold sensitivity. Our objective was to investigate effects of varying amounts of omega-3 fatty acids from linseed oil, administered orally, on quality of fresh and frozen-thawed bull sperm. Twenty fertile Holstein bulls (874 ± 45.38 kg) were randomly and equally assigned to four groups and received encapsulated (rumen-protected) fats for 12 weeks, as follows: group P, 300 g palm oil; group Pl, 200 g palm oil + 100 g linseed oil; group pL, 100 g palm oil + 200 g linseed oil; and group L, 300 g linseed oil. Sperm quality of fresh and frozen-thawed semen was evaluated by routine assays including sperm motion characteristics (CASA), membrane integrity (eosin-nigrosin), membrane activity (hypo-osmotic swelling test; HOST) and malondialdehyde (MDA) content. There were no significant differences among groups in semen volume, sperm concentration or sperm quality parameters in fresh semen. However, after freezing-thawing, total and progressive motility in group P (59.61 ± 1.95 and 40.19 ± 2.48%, respectively; LSM ± SEM) were lower (P < 0.05) than in groups Pl (66.06 ± 1.95 and 47.53 ± 2.48%), pL (65.67 ± 1.95 and 47.48 ± 2.48%) and L (65.36 ± 1.95 and 47.62 ± 2.48)%, with no significant differences among the latter three groups. Furthermore, membrane integrity (eosin-nigrosin) and activity (HOST) were lower (P < 0.05) in group P (55.79 ± 2.15 and 42.19 ± 2.17%) compared to groups Pl (62.73 ± 2.15 and 48.93 ± 2.17%), pL (64.06 ± 2.15 and 50.01 ± 2.17%) and L (64.47 ± 2.15 and 49.68 ± 2.17%), with no significant differences among the latter three. Furthermore, there were more (P < 0.05) morphologically abnormal sperm in group P (25.99 ± 1.62%) than in groups Pl, PL and L (21.55 ± 1.62, 21.69 ± 1.62 and 20.90 ± 1.62%). In conclusion, feeding Holstein bulls 100–300 g linseed oil daily improved sperm cryotolerance.  相似文献   

16.
N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains. These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies. N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3 PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately, the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.  相似文献   

17.
Dry eye (DE) is a multifactorial condition that affects the surface of the eye and induces an inflammatory response. Corneal nerves play an important role in the maintenance of a healthy ocular surface. Here we review corneal structure, nerve architecture, DE conditions, and nerve regeneration following corneal surgery and discuss how n-3 fatty acids affect the health of the cornea. Animal studies show that resolvins, compounds derived from eicosapentaenoic acid (EPA), increase tear volume and decrease inflammation induced by DE. After corneal surgery in rabbits, treatment with nerve growth factor (NGF) or pigment epithelial derived factor (PEDF) in conjunction with docosahexaenoic acid (DHA) increase nerve density and corneal epithelial cell proliferation. Increased synthesis of the novel docosanoid, neuroprotectin D1 (NPD1), was found in corneas after the animals were treated with PEDF and DHA. Topical application of these lipids derived from n-3 fatty acids could be useful in treating DE and prevent clinical complications such as cornea erosion and ulcerations.  相似文献   

18.
Omega-3 fatty acids have been implicated in cancer prevention and treatment. Conventional chemotherapeutics are considered “double-edged swords”, as they kill the cancer cells but also strike the healthy cells causing severe morbidity and sometimes also mortality. Could omega-3 fatty acids in this setting work as a “sword and shield” instead, by being cytotoxic to cancer cells, but at the same time protect healthy cells from these deleterious effects? In addition, may our current diet with decreased omega-3/omega-6 ratio contribute to the increased cancer incidence, and could an omega-3 enriched diet be used as a preventive measure against cancer?Here, we seek answers to these questions by reviewing the effects of omega-3 fatty acids, particularly DHA, on various cancers with emphasis on a cancer of neural origin, neuroblastoma. Results from preventive and therapeutic animal as well as human studies together with mechanisms behind the observed toxicity are summarized.  相似文献   

19.
Omega-3 (n-3) fatty acids inhibit breast and prostate cancer cell growth. We previously showed that N-acylethanolamine derivatives of n-3 (n-3-NAE) are endocannabinoids, which regulate cancer cell proliferation. These n-3-NAE are synthesised in certain cells/tissues, after supplementing with fatty acids, however, no one has assessed whether and to what extent this occurs in cancer cells. We determined levels of endogenous n-3-NAEs in hormone sensitive and insensitive prostate and breast cancer cells and subsequent effects on other endocannabinoids (anandamide and 2-arachidonoylglycerol), before and after supplementing with DHA and EPA fatty acids, using HPLC tandem mass spectrometry. This is the first study reporting that n-3-NAEs are synthesised from their parent n-3 fatty acids in cancer cells, regardless of tumour type, hormone status or the presence of fatty acid amide hydrolase. This could have important implications for the use of n-3 fatty acids as therapeutic agents in breast and prostate cancers expressing cannabinoid receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号