首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi) is a method for the functional analysis of specific genes, and is particularly well developed in the free-living nematode Caenorhabditis elegans. There have been several attempts to apply this method to parasitic nematodes. In a recent study undertaken in Haemonchus contortus, Geldhof and colleagues concluded that, although a mechanism for RNAi existed, the methods developed for RNAi in C. elegans had variable efficacy in this parasitic nematode. The potential benefits of RNAi are clear; however, further studies are required to characterize the mechanism present in parasitic nematodes, and to improve culture systems for these nematodes to monitor the long-term effects of RNAi. Only then could RNAi become a reliable assay of gene function.  相似文献   

2.
RNA interference (RNAi) is a powerful tool for the analysis of gene function in model organisms such as the nematode Caenorhabditis elegans. Recent demonstrations of RNAi in plant parasitic nematodes provide a stimulus to explore the potential of using RNAi to investigate disruption of gene function in Meloidogyne incognita, one of the most important nematode pests of global agriculture. We have used RNAi to examine the importance of dual oxidases (peroxidase and NADPH oxidase), a class of enzyme associated with extracellular matrix cross-linking in C. elegans. RNAi uptake by M. incognita juveniles is highly efficient. In planta infection data show that a single 4-h preinfection treatment with double-stranded RNA derived from the peroxidase region of a dual oxidase gene has effects on gene expression that are phenotypically observable 35 days postinfection. This RNAi effect results in a reduction in egg numbers at 35 days of up to 70%. The in vitro feeding strategy provides a powerful tool for identifying functionally important genes, including those that are potential targets for the development of new agrochemicals or transgenic resistance strategies.  相似文献   

3.
RNA interference (RNAi) has been used extensively in model organisms such as Caenorhabditis elegans. Methods developed for RNAi in C. elegans have also been used in parasitic nematodes. However, RNAi in parasitic nematodes has been unsuccessful or has had limited success. Studies of genes essential for RNAi in C. elegans and of RNAi in Caenorhabditis spp. other than C. elegans suggest two complementary, and testable, hypotheses for the limited success of RNAi in animal parasitic nematodes. These are: (i) that the external supply of double stranded RNA (dsRNA) to parasitic nematodes is inappropriate to achieve RNAi and (ii) that parasitic nematodes are functionally defective in genes required to initiate RNAi from externally supplied dsRNA.  相似文献   

4.
RNA interference (RNAi), first described for Caenorhabditis elegans , has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.  相似文献   

5.
Zhuang JJ  Hunter CP 《Parasitology》2012,139(5):560-573
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.  相似文献   

6.
7.
8.
9.
Lilley CJ  Davies LJ  Urwin PE 《Parasitology》2012,139(5):630-640
SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants.  相似文献   

10.
RNA interference (RNAi) is widely used in Caenorhabditis elegans to identify gene function and has been adapted as a high-throughput screening method to identify genes involved in essential processes. The technique has been applied to parasitic nematodes with variable success and we believe that inconsistent outcomes preclude its use as a robust screen with which to identify potential control targets. In this article, key issues that require clarification are discussed, including the mode of delivery of double-stranded RNA to the parasite, the developmental stage targeted and, perhaps of most importance, whether the RNAi pathway (as defined by studies in C. elegans) is fully functional in some parasitic nematodes.  相似文献   

11.
Gilleard JS 《Parasitology》2004,128(Z1):S49-S70
There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.  相似文献   

12.
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.  相似文献   

13.
RNA interference (RNAi) has revolutionised approaches to gene function determination. From a parasitology perspective, gene function studies have the added dimension of providing validation data, increasingly deemed essential to the initial phases of drug target selection, pre-screen development. Notionally advantageous to those working on nematode parasites is the fact that Caenorhabditis elegans research spawned RNAi discovery and continues to seed our understanding of its fundamentals. Unfortunately, RNAi data for nematode parasites illustrate variable and inconsistent susceptibilities which undermine confidence and exploitation. Now well-ensconced in an era of nematode parasite genomics, we can begin to unscramble this variation.  相似文献   

14.
Analysis of a genomic fragment from the plant parasitic nematode Meloidogyne artiellia revealed the presence of a gene which, in bacteria, is involved in the formation of polyglutamate capsule. Searching of various databases, including the Caenorhabditis elegans genome sequence and the large EST datasets from a variety of parasitic nematodes, showed that no similar genes have been identified in other nematodes or in any other eukaryotic organisms. The M. artiellia gene has a typical eukaryotic structure and its mRNA is present in the intestine. The gene is expressed in all life cycle stages tested. These findings demonstrate horizontal gene transfer may be important in catalyzing the diversification of nematode lineages.  相似文献   

15.
16.
The efficiency of RNA interference (RNAi) delivery to L1 through L3 stage worms of the sheep parasitic nematode Trichostrongylus colubriformis was investigated using several techniques. These were: (i) feeding of Escherichia coli expressing double stranded RNA (dsRNA); (ii) soaking of short interfering (synthetic) RNA oligonucleotides (siRNA) or in vitro transcribed dsRNA molecules; and (iii) electroporation of siRNA or in vitro transcribed dsRNA molecules. Ubiquitin and tropomyosin were used as a target gene because they are well conserved genes whose DNA sequences are available for several nematode parasite species. Ubiquitin siRNA or dsRNA delivered by soaking or electroporation inhibited development in T. colubriformis but with feeding as a delivery method, RNAi of ubiquitin was not successful. Feeding was, however, successful with tropomyosin as a target, suggesting that mode of delivery is an important parameter of RNAi. Electroporation is a particularly efficient means of inducing RNA in nematodes with either short dsRNA oligonucleotides or with long in vitro transcribed dsRNA molecules. These methods permit routine delivery of dsRNA for RNAi in T. colubriformis larval stage parasites and should be applicable to moderate to high-throughput screening.  相似文献   

17.
Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.  相似文献   

18.
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.  相似文献   

19.
In this study we assessed three technologies for silencing gene expression by RNA interference (RNAi) in the sheep parasitic nematode Haemonchus contortus. We chose as targets five genes that are essential in Caenorhabditis elegans (mitr-1, pat-12, vha-19, glf-1 and noah-1), orthologues of which are present and expressed in H. contortus, plus four genes previously tested by RNAi in H. contortus (ubiquitin, tubulin, paramyosin, tropomyosin). To introduce double-stranded RNA (dsRNA) into the nematodes we tested (1) feeding free-living stages of H. contortus with Escherichia coli that express dsRNA targetting the test genes; (2) electroporation of dsRNA into H. contortus eggs or larvae; and (3) soaking adult H. contortus in dsRNA. For each gene tested we observed reduced levels of mRNA in the treated nematodes, except for some electroporation conditions. We did not observe any phenotypic changes in the worms in the electroporation or dsRNA soaking experiments. The feeding method, however, elicited observable changes in the development and viability of larvae for five of the eight genes tested, including the 'essential' genes, Hc-pat-12, Hc-vha-19 and Hc-glf-1. We recommend the E. coli feeding method for RNAi in H. contortus and provide recommendations for future research directions for RNAi in this species.  相似文献   

20.
NLP-12a and b have been identified as cholecystokinin/sulfakinin-like neuropeptides in the free-living nematode Caenorhabditis elegans. They are suggested to play an important role in the regulation of digestive enzyme secretion and fat storage. This study reports on the identification and characterization of an NLP-12-like peptide precursor gene in the rat parasitic nematode Strongyloides ratti. The S. ratti NLP-12 peptides are able to activate both C. elegans CKR-2 receptor isoforms in a dose-dependent way with affinities in the same nanomolar range as the native C. elegans NLP-12 peptides. The C-terminal RPLQFamide sequence motif of the NLP-12 peptides is perfectly conserved between free-living and parasitic nematodes. Based on systemic amino acid replacements the Arg-, Leu- and Phe- residues appear to be critical for high-affinity receptor binding. Finally, a SAR analysis revealed the essential pharmacophore in C. elegans NLP-12b to be the pentapeptide RPLQFamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号