首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.  相似文献   

2.
Odor information is coded in the insect brain in a sequence of steps, ranging from the receptor cells, via the neural network in the antennal lobe, to higher order brain centers, among which the mushroom bodies and the lateral horn are the most prominent. Across all of these processing steps, coding logic is combinatorial, in the sense that information is represented as patterns of activity across a population of neurons, rather than in individual neurons. Because different neurons are located in different places, such a coding logic is often termed spatial, and can be visualized with optical imaging techniques. We employ in vivo calcium imaging in order to record odor‐evoked activity patterns in olfactory receptor neurons, different populations of local neurons in the antennal lobes, projection neurons linking antennal lobes to the mushroom bodies, and the intrinsic cells of the mushroom bodies themselves, the Kenyon cells. These studies confirm the combinatorial nature of coding at all of these stages. However, the transmission of odor‐evoked activity patterns from projection neuron dendrites via their axon terminals onto Kenyon cells is accompanied by a progressive sparsening of the population code. Activity patterns also show characteristic temporal properties. While a part of the temporal response properties reflect the physical sequence of odor filaments, another part is generated by local neuron networks. In honeybees, γ‐aminobutyric acid (GABA)‐ergic and histaminergic neurons both contribute inhibitory networks to the antennal lobe. Interestingly, temporal properties differ markedly in different brain areas. In particular, in the antennal lobe odor‐evoked activity develops over slow time courses, while responses in Kenyon cells are phasic and transient. The termination of an odor stimulus is reflected by a decrease in activity within most glomeruli of the antennal lobe and an off‐response in some glomeruli, while in the mushroom bodies about half of the odor‐activated Kenyon cells also exhibit off‐responses.  相似文献   

3.
A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number of odorants [8-11]. OSNs also exhibit odor-evoked responses with complex temporal dynamics [11], but the contribution of this activity to behavioral odor discrimination has received little attention [12]. Here, we investigated the importance of spatial encoding in the relatively simple Drosophila antennal lobe. We show that Drosophila can learn to discriminate between two odorants with one functional class of Or83b-expressing OSNs. Furthermore, these flies encode one odorant from a mixture and cross-adapt to odorants that activate the relevant OSN class, demonstrating that they discriminate odorants by using the same OSNs. Lastly, flies with a single class of Or83b-expressing OSNs recognize a specific odorant across a range of concentration, indicating that they encode odorant identity. Therefore, flies can distinguish odorants without discrete spatial codes in the antennal lobe, implying an important role for odorant-evoked temporal dynamics in behavioral odorant discrimination.  相似文献   

4.
Cury KM  Uchida N 《Neuron》2010,68(3):570-585
It has been proposed that a single sniff generates a "snapshot" of the olfactory world. However, odor coding on this timescale is poorly understood, and it is not known whether coding is invariant to changes in respiration frequency. We investigated this by recording spike trains from the olfactory bulb in awake, behaving rats. During rapid sniffing, odor inhalation triggered rapid and reliable cell- and odor-specific temporal spike patterns. These fine temporal responses conveyed substantial odor information within the first ~100 ms, and correlated with behavioral discrimination time on a trial-by-trial basis. Surprisingly, the initial transient portions of responses were highly conserved between rapid sniffing and slow breathing. Firing rates over the entire respiration cycle carried less odor information, did not correlate with behavior, and were poorly conserved across respiration frequency. These results suggest that inhalation-coupled transient activity forms a robust neural code that is invariant to changes in respiration behavior.  相似文献   

5.
Odor discrimination times and their dependence on stimulus similarity were evaluated to test temporal and spatial models of odor representation in mice. In a go/no-go operant conditioning paradigm, discrimination accuracy and time were determined for simple monomolecular odors and binary mixtures of odors. Mice discriminated simple odors with an accuracy exceeding 95%. Binary mixtures evoking highly overlapping spatiotemporal patterns of activity in the olfactory bulb were discriminated equally well. However, while discriminating simple odors in less than 200 ms, mice required 70-100 ms more time to discriminate highly similar binary mixtures. We conclude that odor discrimination in mice is fast and stimulus dependent. Thus, the underlying neuronal mechanisms act on a fast timescale, requiring only a brief epoch of odor-specific spatiotemporal representations to achieve rapid discrimination of dissimilar odors. The fine discrimination of highly similar stimuli, however, requires temporal integration of activity, suggesting a tradeoff between accuracy and speed.  相似文献   

6.
M Usuyama  C Ushida  R Shingai 《PloS one》2012,7(8):e42907
We developed a mathematical model of a hypothetical neuronal signal transduction pathway to better understand olfactory perception in Caenorhabditis elegans. This worm has only three pairs of olfactory receptor neurons. Intracellular Ca(2+) decreases in one pair of olfactory neurons in C. elegans, the AWC neurons, following application of an attractive odor and there is a transient increase in intracellular Ca(2+) following removal of odor. The magnitude of this increase is positively correlated with the duration of odor stimulation. Additionally, this Ca(2+) transient is induced by a cGMP second messenger system. We identified likely candidates for the signal transduction molecules functioning in this system based on available gene expression and physiological data from AWCs. Our model incorporated a G-protein-coupled odor receptor, a G-protein, a guanylate cyclase as the G-protein effector, and a single phosphodiesterase. Additionally, a cyclic-nucleotide-gated ion channel and a voltage-gated ion channel that mediated calcium influx were incorporated into the model. We posited that, upon odor stimulation, guanylate cyclase was suppressed by the G-protein and that, upon cessation of the stimulus, the G-protein-induced suppression ceased and cGMP synthesis was restored. A key element of our model was a Ca(2+)-dependent negative feedback loop that ensured that the calcium increases were transient. Two guanylate cyclase-activating proteins acted on the effector guanylate cyclase to negatively regulate cGMP signaling and the resulting calcium influx. Our model was able to closely replicate in silico three important features of the calcium dynamics of AWCs. Specifically, in our simulations, [Ca(2+)] increased rapidly and reached its peak within 10 s after the odor stimulus was removed, peak [Ca(2+)] increased with longer odor exposure, and [Ca(2+)] decreased during a second stimulus that closely followed an initial stimulus. However, application of random background signal ('noise') showed that certain components of the pathway were particularly sensitive to this noise.  相似文献   

7.
The nematode C. elegans is an excellent model organism for studying behavior at the neuronal level. Because of the organism's small size, it is challenging to deliver stimuli to C. elegans and monitor neuronal activity in a controlled environment. To address this problem, we developed two microfluidic chips, the 'behavior' chip and the 'olfactory' chip for imaging of neuronal and behavioral responses in C. elegans. We used the behavior chip to correlate the activity of AVA command interneurons with the worm locomotion pattern. We used the olfactory chip to record responses from ASH sensory neurons exposed to high-osmotic-strength stimulus. Observation of neuronal responses in these devices revealed previously unknown properties of AVA and ASH neurons. The use of these chips can be extended to correlate the activity of sensory neurons, interneurons and motor neurons with the worm's behavior.  相似文献   

8.
Responses of 75 single units in the goldfish olfactory bulb were analyzed in detail for their relationship to the time-course of the change in odor concentration during each odor stimulus. Odor stimuli were controlled for rise time, duration, and peak concentration by an apparatus developed for the purpose. This apparatus enabled aqueous odor stimuli to be interposed into a constant water stream without changes in flow rate. The time-course of the concentration change within the olfactory sac was inferred from conductivity measurements at the incurrent and excurrent nostrils. Temporal patterns of firing rate elicited by stimuli with relatively slow rising and falling phases could be quite complex combinations of excitation and suppression. Different temporal patterns were produced by different substances at a single concentration in most units. Statistical measures of the temporal pattern of response for a small number of cells at a given concentration were more characteristic of the stimulus substance than any of three measures of magnitude of response. The temporal patterns change when the peak concentration, duration, and rise time of the stimuli are varied. The nature of these changes suggests that the different patterns are due primarily to the combined influence of two factors: (a) a stimulus whose concentration varies over time and (b) a relationship between concentration and impulse frequency which varies from unit to unit. Some units produce patterns suggestive of influence by neural events of long time constant. The importance of temporal patterns in odor quality and odor intensity coding is discussed.  相似文献   

9.
10.
Behavioral responses to a sensory stimulus are often guided by associative memories. These associations remain intact even when other factors determine behavior. The substrates of associative memory should therefore be identifiable by neuronal responses that are independent of behavioral choices. We tested this hypothesis using a paired-associates task in which monkeys learned arbitrary associations between pairs of visual stimuli. We examined the activity of neurons in inferior temporal cortex as the animals prepared to choose a remembered stimulus from a visual display. The activity of some neurons (22%) depended on the monkey's behavioral choice; but for a novel class of neurons (54%), activity reflected the stimulus that the monkey was instructed to choose, regardless of the behavioral response. These neurons appear to represent memorized stimulus associations that are stable across variations in behavioral performance. In addition, many neurons (74%) were modulated by the spatial arrangement of the stimuli in the display.  相似文献   

11.
Encoding and decoding of overlapping odor sequences   总被引:3,自引:0,他引:3  
Broome BM  Jayaraman V  Laurent G 《Neuron》2006,51(4):467-482
Odors evoke complex responses in locust antennal lobe projection neurons (PNs)-the mitral cell analogs. These patterns evolve over hundreds of milliseconds and contain information about odor identity and concentration. In nature, animals often encounter many odorants in short temporal succession. We explored the effects of such conditions by presenting two different odors with variable intervening delays. PN ensemble representations tracked stimulus changes and, in some delay conditions, reached states that corresponded neither to the representation of either odor alone nor to the static mixture of the two. We then recorded from Kenyon cells (KCs), the PNs' targets. Their responses were consistent with the PN population's behavior: in some conditions, KCs were recruited that did not fire during single-odor or mixture stimuli. Thus, PN population dynamics are history dependent, and responses of individual KCs are consistent with piecewise temporal decoding of PN output over large sections of the PN population.  相似文献   

12.
Understanding how mammals process olfactory stimuli has motivated the development of tools and techniques which permit the simultaneous study of finely structured spatial and temporal patterns of neural activity. A technique is described that uses an array of 32 penetrating microelectrodes implanted bilaterally into the dorsal aspect of rat olfactory bulb to investigate the responses of mitral and tufted neurons to stimulation with simple enantiomer odor pairs at a number of concentrations. It is shown that stable, simultaneous recordings from up to 49 single- and multi-units can be performed for periods of up to 14 h. We show that such odors evoke unique spatial and fast-temporal activity patterns which may subserve odor discrimination. This technique is extensible to other systems neuroscience investigations of olfactory sensory processing.  相似文献   

13.
There is currently a debate about the role played by temporal patterns in neural activity in olfactory coding. An accurate analysis of this question, however, is only possible if the temporal properties of a stimulus itself are well defined. So far, no technique with sufficient temporal resolution has been available to accomplish this. Using a photoionization detector (PID), we show that the configuration of the odor delivery apparatus and the airflow settings greatly influence the integrity of a stimulus profile within an odor delivery apparatus. In a situation where pulsatile odor stimuli are applied to a stationary preparation, we tested the effect of 1) axial and off-center location within the airstream, 2) airflow of the odor delivery, 3) exit tube length, 4) exit tube diameter, 5) orientation of the odor delivery device in relation to the exhaust flow, and 6) exhaust tube air speed. This has important implications for the study of time in olfaction; significant planning must be incorporated into the design of the experiment to provide a well-defined odor delivery system.  相似文献   

14.
Organisms faced with stressors deploy a suite of adaptive responses in the form of behavioral, physiological and cognitive modifications to overcome the challenge. Interactive effects of these responses are known to influence learning and memory processes and facilitation is thought to be dependent, in part, upon contextual relevance of the stressor to the learning task. Predation is one such stressor for prey animals, and their ability to manage reliable information about predators is essential for adaptive antipredator strategies. Here, we investigated (i) the influence cortisol has on the ability of juvenile rainbow trout to learn and retain conditioned antipredator responses to predatory cues, and (ii) whether conditioned behavioral and physiological responses to predator cues are fixed or deployed in a threat-sensitive manner. Trout were fed cortisol-coated pellets minutes prior to a conditioning event where they were exposed to novel predator odor paired with chemical alarm cues (unconditioned stimulus). We tested for conditioned responses by exposing trout to predator cues after 2, 4 or 10 days and subsequently documented physiological and behavioral responses. Both control and cortisol-fed trout learned the predator odor and responded 2 and 4 days post conditioning. However, at 10 days only cortisol-fed trout maintained strong behavioral responses to predator cues. Interestingly, we failed to find conditioned physiological responses to predator odor despite the presence of threat-sensitive cortisol responses to the unconditioned stimulus. Our findings suggest cortisol exposure prior to predator-learning may enhance retention of conditioned responses, even without a contextual link between stressor source and learning task.  相似文献   

15.
Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical “metallic, blood-like” odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a “character impact compound” of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.  相似文献   

16.
刺激源的方位是刺激的重要特性之一.行为学的研究发现,动物能够利用气味到达左右鼻腔的时间差和强度差信息对气味方位进行感知,但作为嗅觉系统第一神经中枢的嗅球,是否具有利用两侧鼻间差信息对气味方位进行编码的能力一直受到质疑.为探讨该问题,在本研究中通过比较嗅球中84个僧帽细胞对同侧气味刺激、对侧气味刺激以及对侧气味刺激略先于同侧气味刺激时的反应,发现有29个僧帽细胞可被同侧气味所兴奋,其中18个虽然对对侧气味刺激不反应,但对侧气味的存在却能显著降低其对同侧气味刺激的反应.另外,50个僧帽细胞在只给予同侧或对侧气味刺激时不反应,但其中11个在对侧刺激略先于同侧刺激的方式给出气味时,表现出明显的兴奋性反应.我们的研究结果一方面提示僧帽细胞具有编码气味到达两个鼻腔的时间差,或气味源位置信息的能力;另一方面也表明对侧刺激不仅能对同侧嗅球僧帽细胞产生抑制效应,还可能存在目前还不明确的机制而产生兴奋效应.  相似文献   

17.
Coding of odors by a receptor repertoire   总被引:15,自引:0,他引:15  
Hallem EA  Carlson JR 《Cell》2006,125(1):143-160
We provide a systematic analysis of how odor quality, quantity, and duration are encoded by the odorant receptor repertoire of the Drosophila antenna. We test the receptors with a panel of over 100 odors and find that strong responses are sparse, with response density dependent on chemical class. Individual receptors range along a continuum from narrowly tuned to broadly tuned. Broadly tuned receptors are most sensitive to structurally similar odorants. Strikingly, inhibitory responses are widespread among receptors. The temporal dynamics of the receptor repertoire provide a rich representation of odor quality, quantity, and duration. Receptors with similar odor sensitivity often map to widely dispersed glomeruli in the antennal lobe. We construct a multidimensional "odor space" based on the responses of each individual receptor and find that the positions of odors depend on their chemical class, concentration, and molecular complexity. The space provides a basis for predicting behavioral responses to odors.  相似文献   

18.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

19.
Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities.  相似文献   

20.
Miura K  Mainen ZF  Uchida N 《Neuron》2012,74(6):1087-1098
How information encoded in neuronal spike trains is used to guide sensory decisions is a fundamental question. In olfaction, a single sniff is sufficient for fine odor discrimination but the neural representations on which olfactory decisions are based are unclear. Here, we recorded neural ensemble activity in the anterior piriform cortex (aPC) of rats performing an odor mixture categorization task. We show that odors evoke transient bursts locked to sniff onset and that odor identity can be better decoded using burst spike counts than by spike latencies or temporal patterns. Surprisingly, aPC ensembles also exhibited near-zero noise correlations during odor stimulation. Consequently, fewer than 100 aPC neurons provided sufficient information to account for behavioral speed and accuracy, suggesting that behavioral performance limits arise downstream of aPC. These findings demonstrate profound transformations in the dynamics of odor representations from the olfactory bulb to cortex and reveal likely substrates for odor-guided decisions. VIDEO ABSTRACT:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号