首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

2.
NOD2/CARD15 mediates innate immune responses to mycobacterial infection. However, its role in the regulation of adaptive immunity has remained unknown. In this study, we examined host defense, T cell responses, and tissue pathology in two models of pulmonary mycobacterial infection, using wild-type and Nod2-deficient mice. During the early phase of aerosol infection with Mycobacterium tuberculosis, Nod2(-/-) mice had similar bacterial counts but reduced inflammatory response on histopathology at 4 and 8 wk postchallenge compared with wild-type animals. These findings were confirmed upon intratracheal infection of mice with attenuated Mycobacterium bovis bacillus Calmette-Guérin. Analysis of the lungs 4 wk after bacillus Calmette-Guérin infection demonstrated that Nod2(-/-) mice had decreased production of type 1 cytokines and reduced recruitment of CD8(+) and CD4(+) T cells. Ag-specific T cell responses in both the spleens and thoracic lymph nodes were diminished in Nod2(-/-) mice, indicating impaired adaptive antimycobacterial immunity. The immune regulatory role of NOD2 was not restricted to the lung since Nod2 disruption also led to reduced type 1 T cell activation following i.m. bacillus Calmette-Guérin infection. To determine the importance of diminished innate and adaptive immunity, we measured bacterial burden 6 mo after aerosol infection with M. tuberculosis and followed a second infected group for assessment of survival. Nod2(-/-) mice had a higher bacterial burden in the lungs 6 mo after infection and succumbed sooner than did wild-type controls. Taken together, these data indicate that NOD2 mediates resistance to mycobacterial infection via both innate and adaptive immunity.  相似文献   

3.
4.
5.
Staphylococcus aureus infection elicits through its mature lipoproteins an innate immune response by TLR2-MyD88 signaling, which improves bacterial clearing and disease outcome. The role of dendritic cells (DCs) and T cells in this immune activation and the function of T and B cells in defense against S. aureus infection remain unclear. Therefore, we first evaluated DC and T cell activation after infection with S. aureus wild type (WT) and its isogenic mutant, which is deficient in lipoprotein maturation, in vitro. Lipoproteins in viable S. aureus contributed via TLR2-MyD88 to activation of DCs, which promoted the release of IFN-γ and IL-17 in CD4(+) T cells. This strong effect was independent of superantigens and MHC class II. We next evaluated the function of T cells and their cytokines IFN-γ and IL-17 in infection in vivo. Six days after systemic murine infection IFN-γ, IL-17, and IL-10 production in total spleen cells were MyD88-dependent and their levels increased until day 21. The comparison of CD3(-/-), Rag2(-/-), and C57BL/6 mice after infection revealed that IFN-γ and IL-17 originated from T cells and IL-10 originated from innate immune cells. Furthermore, vaccination of mice to activate T and B cells did not improve eradication of S. aureus from organs. In conclusion, S. aureus enhances DC activation via TLR2-MyD88 and thereby promotes T(H)1 and T(H)17 cell differentiation. However, neither T cells and their MyD88-regulated products, IFN-γ and IL-17, nor B cells affected bacterial clearing from organs and disease outcome.  相似文献   

6.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

7.
8.
T(H)-17 cells have been shown to play a role in bacterial defense, acute inflammation, and autoimmunity. We examined the role of interleukin 17 (IL-17) production in human immunodeficiency virus type 1 (HIV-1) infection. Both HIV-1- and cytomegalovirus (CMV)-specific IL-17-producing CD4(+) T cells were detectable in early HIV-1 infection but were reduced to nondetectable levels in chronic and nonprogressive HIV-1 infection. IL-17-producing CMV-specific cells were not detected in blood from HIV-1-uninfected normal volunteers. Virus-specific T(H)-17 cells could coexpress other cytokines and could express CCR4 or CXCR3. Although the etiology of these cells has yet to be established, we propose that microbial translocation may induce them.  相似文献   

9.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

10.
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.  相似文献   

11.
Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that gammadelta T cell population was the major source of IL-17. Mice depleted of gammadelta T cells by mAb treatment or mice genetically lacking Vdelta1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vdelta1(+) gammadelta T cells as the source of IL-17. It was further revealed that gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although gammadelta T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of gammadelta T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.  相似文献   

12.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

13.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   

14.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

15.
Interleukin-12 (IL-12) is a heterodimeric pro-inflammatory cytokine that induces the production of interferon-gamma (IFN-gamma), favours the differentiation of T helper 1 (T(H)1) cells and forms a link between innate resistance and adaptive immunity. Dendritic cells (DCs) and phagocytes produce IL-12 in response to pathogens during infection. Production of IL-12 is dependent on differential mechanisms of regulation of expression of the genes encoding IL-12, patterns of Toll-like receptor (TLR) expression and cross-regulation between the different DC subsets, involving cytokines such as IL-10 and type I IFN. Recent data, however, argue against an absolute requirement for IL-12 for T(H)1 responses. Our understanding of the relative roles of IL-12 and other factors in T(H)1-type maturation of both CD4+ and CD8+ T cells is discussed here, including the participation in this process of IL-23 and IL-27, two recently discovered members of the new family of heterodimeric cytokines.  相似文献   

16.
Recent studies have shown that IL-17 can contribute beneficially to pathogen defense but also that excessive IL-17 levels are associated with chronic inflammation and autoimmune disorders. To date, the role of IL-17 in viral infections and type 1 diabetes is ambiguous. In this study, we used IL-17A enhanced green fluorescent protein bicistronic reporter mouse strains to analyze in situ production of IL-17A. Upon Klebsiella pneumoniae bacterial infection, CD4(+) and γδ T cells produce IL-17A. In contrast, CD4(+) or CD8(+) T cells do not produce IL-17A in response to acute or protracted viral infection with lymphocytic choriomeningitis virus or during autoimmune diabetes development in the CD8-driven lymphocytic choriomeningitis virus-induced model of type 1 diabetes. We conclude that viral elimination and type 1 diabetes can occur in the absence of detectable IL-17A production, suggesting IL-17A is not essential in these settings.  相似文献   

17.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

18.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   

19.
Lee WW  Lee N  Fujii H  Kang I 《Cellular immunology》2012,275(1-2):19-23
The differentiation of T helper (Th) cells is critically dependent on cytokine milieu. The innate immune monocytes produce IL-1β which can affect the development of Th17 and Th1 cells that predominantly produce IL-17 and IFN-γ, respectively. Oligosaccharides from microorganisms, crops and mushrooms can stimulate innate immune cells. Active Hexose Correlated Compound (AHCC) that contains a large amount of oligosaccharides is a natural extract prepared from the mycelium of the edible Basidiomycete fungus. This compound is reported to modulate immune responses against pathogens although the mechanisms for this effect are largely unknown. Here we show that AHCC could induce high levels of IL-1β production from human monocytes. Furthermore, AHCC-treated monocytes increased the production of IL-17 and IFN-γ from autologous CD4(+) T cells, which was blocked by adding IL-1 receptor antagonist. These finding provide new insight into how food supplements like AHCC could enhance human immunity by modulating monocytes and Th cells.  相似文献   

20.
Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system (CNS) inflammation, decreased Th1 and Th17 responses, and an increase in regulatory T cells (Treg). In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC) that included a decrease in CD11c(+)CD11b(+)CD4(+) dendritic cells (DC) and an elevation of CD11b(hi)Gr1(hi) monocytes. CD11b(+) cells from these mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its effects on cells of the innate immune system, and may not influence T cells directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号