首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Objective

To estimate the degree of synergism between helminth species in their combined effects on anemia.

Methods

Quantitative egg counts using the Kato–Katz method were determined for Ascaris lumbricoides, hookworm, Trichuris trichiura, and Schistosoma japonicum in 507 school-age children from helminth-endemic villages in The Philippines. Infection intensity was defined in three categories: uninfected, low, or moderate/high (M+). Anemia was defined as hemoglobin <11 g/dL. Logistic regression models were used to estimate odds ratios (OR), 95% confidence intervals (CI), and synergy index for pairs of concurrent infections.

Results

M+ co-infection of hookworm and S. japonicum (OR = 13.2, 95% CI: 3.82–45.5) and of hookworm and T. trichiura (OR = 5.34, 95% CI: 1.76–16.2) were associated with higher odds of anemia relative to children without respective M+ co-infections. For co-infections of hookworm and S. japonicum and of T. trichiura and hookworm, the estimated indices of synergy were 2.9 (95% CI: 1.1–4.6) and 1.4 (95% CI: 0.9–2.0), respectively.

Conclusion

Co-infections of hookworm and either S. japonicum or T. trichiura were associated with higher levels of anemia than would be expected if the effects of these species had only independent effects on anemia. This suggests that integrated anti-helminthic treatment programs with simultaneous deworming for S. japonicum and some geohelminths could yield a greater than additive benefit for reducing anemia in helminth-endemic regions.  相似文献   

2.

Background

Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of anaemia cases in preschool children for 2011.

Methods and Findings

National cross-sectional household-based demographic health surveys were conducted in 7,147 children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children, the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild, moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm coinfections, respectively. A large spatial cluster of low mean Hb (<80 g/l) and maximal risk of anaemia (>95%) was predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–4 y are anaemic in the three study countries.

Conclusions

By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool children in Africa. Please see later in the article for the Editors'' Summary  相似文献   

3.

Background

Residents of resource-poor tropical countries carry heavy burdens of concurrent parasitic infections, leading to high rates of morbidity and mortality. This study was undertaken to help identify the social and environmental determinants of multiple parasite infection in one such community.

Methodology/Principal Findings

Residents of Kingwede, Kenya aged 8 years and older were tested for presence and intensity of S. haematobium and Plasmodium spp. infections in a cross-sectional, household-based, community survey. Using General Estimating Equation (GEE) models, social and environmental determinants associated with patterns of co-infection were identified, with age being one of the most important factors. Children had 9.3 times the odds of co-infection compared to adults (95%CI = 5.3–16.3). Even after controlling for age, socio-economic position, and other correlates of co-infection, intense concomitant infections with the two parasites were found to cluster in a subset of individuals: the odds of heavy vs. light S. haematobium infection increased with increasing Plasmodium infection intensity suggesting the importance of unmeasured biological factors in determining intensity of co-infection.

Conclusions/Significance

Children in this community are more likely to be infected with multiple parasites than are adults and should therefore be targeted for prevention and control interventions. More importantly, heavy infections with multiple parasite species appear to cluster within a subset of individuals. Further studies focusing on these most vulnerable people are warranted.  相似文献   

4.

Background

A national mapping of Schistosoma haematobium was conducted in Sierra Leone before the mass drug administration (MDA) with praziquantel. Together with the separate mapping of S. mansoni and soil-transmitted helminths, the national control programme was able to plan the MDA strategies according to the World Health Organization guidelines for preventive chemotherapy for these diseases.

Methodology/Principal Findings

A total of 52 sites/schools were selected according to prior knowledge of S. haematobium endemicity taking into account a good spatial coverage within each district, and a total of 2293 children aged 9–14 years were examined. Spatial analysis showed that S. haematobium is heterogeneously distributed in the country with significant spatial clustering in the central and eastern regions of the country, most prevalent in Bo (24.6% and 8.79 eggs/10 ml), Koinadugu (20.4% and 3.53 eggs/10 ml) and Kono (25.3% and 7.91 eggs/10 ml) districts. By combining this map with the previously reported maps on intestinal schistosomiasis using a simple probabilistic model, the combined schistosomiasis prevalence map highlights the presence of high-risk communities in an extensive area in the northeastern half of the country. By further combining the hookworm prevalence map, the at-risk population of school-age children requiring integrated schistosomiasis/soil-transmitted helminth treatment regimens according to the coendemicity was estimated.

Conclusions/Significance

The first comprehensive national mapping of urogenital schistosomiasis in Sierra Leone was conducted. Using a new method for calculating the combined prevalence of schistosomiasis using estimates from two separate surveys, we provided a robust coendemicity mapping for overall urogenital and intestinal schistosomiasis. We also produced a coendemicity map of schistosomiasis and hookworm. These coendemicity maps can be used to guide the decision making for MDA strategies in combination with the local knowledge and programme needs.  相似文献   

5.

Background

Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania.

Methodology

School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively.

Principal Findings

Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia.

Conclusions/Significance

These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation.  相似文献   

6.

Background

Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear.

Methods

We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥37.5°C) and parasitemia (≥2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored.

Results

After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode.

Conclusions

Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are needed to determine whether co-infection induces immunomodulatory mechanisms that protect against febrile malaria or whether genetic, behavioral, or environmental factors not accounted for here explain these findings.  相似文献   

7.

Background

Controversy persists about the optimal approach to drug-based control of schistosomiasis in high-risk communities. In a systematic review of published studies, we examined evidence for incremental benefits from repeated praziquantel dosing, given 2 to 8 weeks after an initial dose, in Schistosoma-endemic areas of Africa.

Methodology/Principal Findings

We performed systematic searches of electronic databases PubMed and EMBASE for relevant data using search terms ‘schistosomiasis’, ‘dosing’ and ‘praziquantel’ and hand searches of personal collections and bibliographies of recovered articles. In 10 reports meeting study criteria, improvements in parasitological treatment outcomes after two doses of praziquantel were greater for S. mansoni infection than for S. haematobium infection. Observed cure rates (positive to negative conversion in egg detection assays) were, for S. mansoni, 69–91% cure after two doses vs. 42–79% after one dose and, for S. haematobium, 46–99% cure after two doses vs. 37–93% after a single dose. Treatment benefits in terms of reduction in intensity (mean egg count) were also different for the two species—for S. mansoni, the 2-dose regimen yielded an weighted average 89% reduction in standardized egg counts compared to a 83% reduction after one dose; for S. haematobium, two doses gave a 93% reduction compared to a 94% reduction with a single dose. Cost-effectiveness analysis was performed based on Markov life path modeling.

Conclusions/Significance

Although schedules for repeated treatment with praziquantel require greater inputs in terms of direct costs and community participation, there are incremental benefits to this approach at an estimated cost of $153 (S. mansoni)–$211 (S. haematobium) per additional lifetime QALY gained by double treatment in school-based programs. More rapid reduction of infection-related disease may improve program adherence, and if, as an externality of the program, transmission can be reduced through more effective coverage, significant additional benefits are expected to accrue in the targeted communities.  相似文献   

8.

Background

Promising results have been reported for a urine circulating cathodic antigen (CCA) test for the diagnosis of Schistosoma mansoni. We assessed the accuracy of a commercially available CCA cassette test (designated CCA-A) and an experimental formulation (CCA-B) for S. mansoni diagnosis.

Methodology

We conducted a cross-sectional survey in three settings of Côte d''Ivoire: settings A and B are endemic for S. mansoni, whereas S. haematobium co-exists in setting C. Overall, 446 children, aged 8–12 years, submitted multiple stool and urine samples. For S. mansoni diagnosis, stool samples were examined with triplicate Kato-Katz, whereas urine samples were tested with CCA-A. The first stool and urine samples were additionally subjected to an ether-concentration technique and CCA-B, respectively. Urine samples were examined for S. haematobium using a filtration method, and for microhematuria using Hemastix dipsticks.

Principal Findings

Considering nine Kato-Katz as diagnostic ‘gold’ standard, the prevalence of S. mansoni in setting A, B and C was 32.9%, 53.1% and 91.8%, respectively. The sensitivity of triplicate Kato-Katz from the first stool and a single CCA-A test was 47.9% and 56.3% (setting A), 73.9% and 69.6% (setting B), and 94.2% and 89.6% (setting C). The respective sensitivity of a single CCA-B was 10.4%, 29.9% and 75.0%. The ether-concentration technique showed a low sensitivity for S. mansoni diagnosis (8.3–41.0%). The specificity of CCA-A was moderate (76.9–84.2%); CCA-B was high (96.7–100%). The likelihood of a CCA-A color reaction increased with higher S. mansoni fecal egg counts (odds ratio: 1.07, p<0.001). A concurrent S. haematobium infection or the presence of microhematuria did not influence the CCA-A test results for S. mansoni diagnosis.

Conclusion/Significance

CCA-A showed similar sensitivity than triplicate Kato-Katz for S. mansoni diagnosis with no cross-reactivity to S. haematobium and microhematuria. The low sensitivity of CCA-B in our study area precludes its use for S. mansoni diagnosis.  相似文献   

9.

Background

In coastal Kenya, infection of human populations by a variety of parasites often results in co-infection or poly-parasitism. These parasitic infections, separately and in conjunction, are a major cause of chronic clinical and sub-clinical human disease and exert a long-term toll on economic welfare of affected populations. Risk factors for these infections are often shared and overlap in space, resulting in interrelated patterns of transmission that need to be considered at different spatial scales. Integration of novel quantitative tools and qualitative approaches is needed to analyze transmission dynamics and design effective interventions.

Methodology

Our study was focused on detecting spatial and demographic patterns of single- and co-infection in six villages in coastal Kenya. Individual and household level data were acquired using cross-sectional, socio-economic, and entomological surveys. Generalized additive models (GAMs and GAMMs) were applied to determine risk factors for infection and co-infections. Spatial analysis techniques were used to detect local clusters of single and multiple infections.

Principal findings

Of the 5,713 tested individuals, more than 50% were infected with at least one parasite and nearly 20% showed co-infections. Infections with Schistosoma haematobium (26.0%) and hookworm (21.4%) were most common, as was co-infection by both (6.3%). Single and co-infections shared similar environmental and socio-demographic risk factors. The prevalence of single and multiple infections was heterogeneous among and within communities. Clusters of single and co-infections were detected in each village, often spatially overlapped, and were associated with lower SES and household crowding.

Conclusion

Parasitic infections and co-infections are widespread in coastal Kenya, and their distributions are heterogeneous across landscapes, but inter-related. We highlighted how shared risk factors are associated with high prevalence of single infections and can result in spatial clustering of co-infections. Spatial heterogeneity and synergistic risk factors for polyparasitism need to be considered when designing surveillance and intervention strategies.  相似文献   

10.

Background

Foreign-born, HIV-infected persons are at risk for sub-clinical parasitic infections acquired in their countries of origin. The long-term consequences of co-infections can be severe, yet few data exist on parasitic infection prevalence in this population.

Methodology/Principal Findings

This cross-sectional study evaluated 128 foreign-born persons at one HIV clinic. We performed stool studies and serologic testing for strongyloidiasis, schistosomiasis, filarial infection, and Chagas disease based on the patient''s country of birth. Eosinophilia and symptoms were examined as predictors of helminthic infection. Of the 128 participants, 86 (67%) were male, and the median age was 40 years; 70 were Mexican/Latin American, 40 African, and 18 from other countries or regions. Strongyloides stercoralis antibodies were detected in 33/128 (26%) individuals. Of the 52 persons from schistosomiasis-endemic countries, 15 (29%) had antibodies to schistosome antigens; 7 (47%) had antibodies to S. haematobium, 5 (33%) to S. mansoni, and 3 (20%) to both species. Stool ova and parasite studies detected helminths in 5/85 (6%) persons. None of the patients tested had evidence of Chagas disease (n = 77) or filarial infection (n = 52). Eosinophilia >400 cells/mm3 was associated with a positive schistosome antibody test (OR 4.5, 95% CI 1.1–19.0). The only symptom significantly associated with strongyloidiasis was weight loss (OR 3.1, 95% CI 1.4–7.2).

Conclusions/Significance

Given the high prevalence of certain helminths and the potential lack of suggestive symptoms and signs, selected screening for strongyloidiasis and schistosomiasis or use of empiric antiparasitic therapy may be appropriate among foreign-born, HIV-infected patients. Identifying and treating helminth infections could prevent long-term complications.  相似文献   

11.

Background

Deworming is recommended by the WHO in girls and pregnant and lactating women to reduce anaemia in areas where hookworm and anaemia are common. There is conflicting evidence on the harm and the benefits of intestinal geohelminth infections on the incidence and severity of malaria, and consequently on the risks and benefits of deworming in malaria affected populations. We examined the association between geohelminths and malaria in pregnancy on the Thai-Burmese border.

Methodology

Routine antenatal care (ANC) included active detection of malaria (weekly blood smear) and anaemia (second weekly haematocrit) and systematic reporting of birth outcomes. In 1996 stool samples were collected in cross sectional surveys from women attending the ANCs. This was repeated in 2007 when malaria incidence had reduced considerably. The relationship between geohelminth infection and the progress and outcome of pregnancy was assessed.

Principal Findings

Stool sample examination (339 in 1996, 490 in 2007) detected a high prevalence of geohelminths 70% (578/829), including hookworm (42.8% (355)), A. lumbricoides (34.4% (285)) and T.trichuria (31.4% (250)) alone or in combination. A lower proportion of women (829) had mild (21.8% (181)) or severe (0.2% (2)) anaemia, or malaria 22.4% (186) (P.vivax monoinfection 53.3% (101/186)). A. lumbricoides infection was associated with a significantly decreased risk of malaria (any species) (AOR: 0.43, 95% CI: 0.23–0.84) and P.vivax malaria (AOR: 0.29, 95% CI: 0.11–0.79) whereas hookworm infection was associated with an increased risk of malaria (any species) (AOR: 1.66, 95% CI: 1.06–2.60) and anaemia (AOR: 2.41, 95% CI: 1.18–4.93). Hookworm was also associated with low birth weight (AOR: 1.81, 95% CI: 1.02–3.23).

Conclusion/Significance

A. lumbricoides and hookworm appear to have contrary associations with malaria in pregnancy.  相似文献   

12.

Background

Urogenital schistosomiasis caused by Schistosoma haematobium was endemic in Adasawase, Ghana in 2007. Transmission was reported to be primarily through recreational water contact.

Methods

We designed a water recreation area (WRA) to prevent transmission to school-aged children. The WRA features a concrete pool supplied by a borehole well and a gravity-driven rainwater collection system; it is 30 m2 and is split into shallow and deep sections to accommodate a variety of age groups. The WRA opened in 2009 and children were encouraged to use it for recreation as opposed to the local river. We screened children annually for S. haematobium eggs in their urine in 2008, 2009, and 2010 and established differences in infection rates before (2008–09) and after (2009–10) installation of the WRA. After each annual screening, children were treated with praziquantel and rescreened to confirm parasite clearance.

Principal Findings

Initial baseline testing in 2008 established that 105 of 247 (42.5%) children were egg-positive. In 2009, with drug treatment alone, the pre-WRA annual cumulative incidence of infection was 29 of 216 (13.4%). In 2010, this incidence rate fell significantly (p<0.001, chi-squared) to 9 of 245 (3.7%) children after installation of the WRA. Logistic regression analysis was used to determine correlates of infection among the variables age, sex, distance between home and river, minutes observed at the river, low height-for-age, low weight-for-age, low Body Mass Index (BMI)-for-age, and previous infection status.

Conclusion/Significance

The installation and use of a WRA is a feasible and highly effective means to reduce the incidence of schistosomiasis in school-aged children in a rural Ghanaian community. In conjunction with drug treatment and education, such an intervention can represent a significant step towards the control of schistosomiasis. The WRA should be tested in other water-rich endemic areas to determine whether infection prevalence can be substantially reduced.  相似文献   

13.

Background

Accurate data on childhood pneumonia aetiology are essential especially from regions where mortality is high, in order to inform case-management guidelines and the potential of prevention strategies such as bacterial conjugate vaccines. Yield from blood culture is low, but lung aspirate culture provides a higher diagnostic yield. We aimed to determine if diagnostic yield could be increased further by polymerase chain reaction (PCR) detection of bacteria (Streptococcus pneumoniae and Haemophilus influenzae b) and viruses in lung aspirate fluid.

Methods

A total of 95 children with radiological focal, lobar or segmental consolidation had lung aspirate performed and sent for bacterial culture and for PCR for detection of bacteria, viruses and Pneumocystis jirovecii. In children with a pneumococcal aetiology, pneumococcal bacterial loads were calculated in blood and lung aspirate fluid.

Results

Blood culture identified a bacterial pathogen in only 8 patients (8%). With the addition of PCR on lung aspirate samples, causative pathogens (bacterial, viral, pneumocystis) were identified singly or as co-infections in 59 children (62%). The commonest bacterial organism was S.pneumoniae (41%), followed by H. influenzae b (6%), and the commonest virus identified was adenovirus (16%), followed by human bocavirus (HBoV) (4%), either as single or co-infection.

Conclusions

In a select group of African children, lung aspirate PCR significantly improves diagnostic yield. Our study confirms a major role of S.pneumoniae and viruses in the aetiology of childhood pneumonia in Africa.  相似文献   

14.

Background

Soil-transmitted helminth (STH) infections (i.e., Ascaris lumbricoides, hookworm, and Trichuris trichiura) affect more than a billion people. Preventive chemotherapy (i.e., repeated administration of anthelmintic drugs to at-risk populations), is the mainstay of control. This strategy, however, does not prevent reinfection. We performed a systematic review and meta-analysis to assess patterns and dynamics of STH reinfection after drug treatment.

Methodology

We systematically searched PubMed, ISI Web of Science, EMBASE, Cochrane Database of Systematic Reviews, China National Knowledge Infrastructure, WanFang Database, Chinese Scientific Journal Database, and Google Scholar. Information on study year, country, sample size, age of participants, diagnostic method, drug administration strategy, prevalence and intensity of infection pre- and posttreatment, cure and egg reduction rate, evaluation period posttreatment, and adherence was extracted. Pooled risk ratios from random-effects models were used to assess the risk of STH reinfection after treatment. Our protocol is available on PROSPERO, registration number: CRD42011001678.

Principal Findings

From 154 studies identified, 51 were included and 24 provided STH infection rates pre- and posttreatment, whereas 42 reported determinants of predisposition to reinfection. At 3, 6, and 12 months posttreatment, A. lumbricoides prevalence reached 26% (95% confidence interval (CI): 16–43%), 68% (95% CI: 60–76%) and 94% (95% CI: 88–100%) of pretreatment levels, respectively. For T. trichiura, respective reinfection prevalence were 36% (95% CI: 28–47%), 67% (95% CI: 42–100%), and 82% (95% CI: 62–100%), and for hookworm, 30% (95% CI: 26–34%), 55% (95% CI: 34–87%), and 57% (95% CI: 49–67%). Prevalence and intensity of reinfection were positively correlated with pretreatment infection status.

Conclusion

STH reinfections occur rapidly after treatment, particularly for A. lumbricoides and T. trichiura. Hence, there is a need for frequent anthelmintic drug administrations to maximize the benefit of preventive chemotherapy. Integrated control approaches emphasizing health education and environmental sanitation are needed to interrupt transmission of STH.  相似文献   

15.

Background

Albendazole and mebendazole are increasingly deployed for preventive chemotherapy targeting soil-transmitted helminth (STH) infections. We assessed the efficacy of single oral doses of albendazole (400 mg) and mebendazole (500 mg) for the treatment of hookworm infection in school-aged children in Lao PDR. Since Opisthorchis viverrini is co-endemic in our study setting, the effect of the two drugs could also be determined against this liver fluke.

Methodology

We conducted a randomized, open-label, two-arm trial. In total, 200 children infected with hookworm (determined by quadruplicate Kato-Katz thick smears derived from two stool samples) were randomly assigned to albendazole (n = 100) and mebendazole (n = 100). Cure rate (CR; percentage of children who became egg-negative after treatment), and egg reduction rate (ERR; reduction in the geometric mean fecal egg count at treatment follow-up compared to baseline) at 21–23 days posttreatment were used as primary outcome measures. Adverse events were monitored 3 hours post treatment.

Principal Findings

Single-dose albendazole and mebendazole resulted in CRs of 36.0% and 17.6% (odds ratio: 0.4; 95% confidence interval: 0.2–0.8; P = 0.01), and ERRs of 86.7% and 76.3%, respectively. In children co-infected with O. viverrini, albendazole and mebendazole showed low CRs (33.3% and 24.2%, respectively) and moderate ERRs (82.1% and 78.2%, respectively).

Conclusions/Significance

Both albendazole and mebendazole showed disappointing CRs against hookworm, but albendazole cured infection and reduced intensity of infection with a higher efficacy than mebendazole. Single-dose administrations showed an effect against O. viverrini, and hence it will be interesting to monitor potential ancillary benefits of a preventive chemotherapy strategy that targets STHs in areas where opisthorchiasis is co-endemic.

Clinical Trial Registration

Current Controlled Trials ISRCTN29126001  相似文献   

16.

Background

Morbidity due to schistosomiasis is currently controlled by treatment of schistosome infected people with the antihelminthic drug praziquantel (PZQ). Children aged up to 5 years are currently excluded from schistosome control programmes largely due to the lack of PZQ safety data in this age group. This study investigated the safety and efficacy of PZQ treatment in such children.

Methods

Zimbabwean children aged 1–5 years (n = 104) were treated with PZQ tablets and side effects were assessed by questionnaire administered to their caregivers within 24 hours of taking PZQ. Treatment efficacy was determined 6 weeks after PZQ administration through schistosome egg counts in urine. The change in infection levels in the children 1–5 years old (n = 100) was compared to that in 6–10 year old children (n = 435).

Principal Findings

Pre-treatment S. haematobium infection intensity in 1–5 year olds was 14.6 eggs/10 ml urine and prevalence was 21%. Of the 104 children, 3.8% reported side effects within 24 hours of taking PZQ treatment. These were stomach ache, loss of appetite, lethargy and inflammation of the face and body. PZQ treatment significantly reduced schistosome infection levels in 1–5 year olds with an egg reduction rate (ERR) of 99% and cure rate (CR) of 92%. This was comparable to the efficacy of praziquantel in 6–10 year olds where ERR was 96% and CR was 67%.

Interpretation/Significance

PZQ treatment is as safe and efficacious in children aged 1–5 years as it is in older children aged 6–10 years in whom PZQ is the drug of choice for control of schistosome infections.  相似文献   

17.

Background

Helminth co-infection in humans is common in tropical regions of the world where transmission of soil-transmitted helminths such as Ascaris lumbricoides, Trichuris trichiura, and the hookworms Necator americanus and Ancylostoma duodenale as well as other helminths such as Schistosoma mansoni often occur simultaneously.

Methodology

We investigated whether co-infection with another helminth(s) altered the human immune response to crude antigen extracts from either different stages of N. americanus infection (infective third stage or adult) or different crude antigen extract preparations (adult somatic and adult excretory/secretory). Using these antigens, we compared the cellular and humoral immune responses of individuals mono-infected with hookworm (N. americanus) and individuals co-infected with hookworm and other helminth infections, namely co-infection with either A. lumbricoides, Schistosoma mansoni, or both. Immunological variables were compared between hookworm infection group (mono- versus co-infected) by bootstrap, and principal component analysis (PCA) was used as a data reduction method.

Conclusions

Contrary to several animal studies of helminth co-infection, we found that co-infected individuals had a further downmodulated Th1 cytokine response (e.g., reduced INF-γ), accompanied by a significant increase in the hookworm-specific humoral immune response (e.g. higher levels of IgE or IgG4 to crude antigen extracts) compared with mono- infected individuals. Neither of these changes was associated with a reduction of hookworm infection intensity in helminth co-infected individuals. From the standpoint of hookworm vaccine development, these results are relevant; i.e., the specific immune response to hookworm vaccine antigens might be altered by infection with another helminth.  相似文献   

18.

Background

Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.

Methods/Findings

A total of 634 human and 105 domestic canine and feline fecal samples were randomly collected. The overall prevalence of hookworm in humans and animals determined via microscopy was 9.1% (95% CI = 7.0–11.7%) and 61.9% (95% CI = 51.2–71.2%), respectively. Multivariate analysis indicated that participants without the provision of proper latrine systems (OR = 3.5; 95% CI = 1.53–8.00; p = 0.003), walking barefooted (OR = 5.6; 95% CI = 2.91–10.73; p<0.001) and in close contact with pets or livestock (OR = 2.9; 95% CI = 1.19–7.15; p = 0.009) were more likely to be infected with hookworms. Molecular analysis revealed that while most hookworm-positive individuals were infected with Necator americanus, Ancylostoma ceylanicum constituted 12.8% of single infections and 10.6% mixed infections with N. americanus. As for cats and dogs, 52.0% were positive for A. ceylanicum, 46.0% for Ancylostoma caninum and 2.0% for Ancylostoma braziliense and all were single infections.

Conclusion

This present study provided evidence based on the combination of epidemiological, conventional diagnostic and molecular tools that A. ceylanicum infection is common and that its transmission dynamic in endemic areas in Malaysia is heightened by the close contact of human and domestic animal (i.e., dogs and cats) populations.  相似文献   

19.

Background

Urinary Schistosomiasis infection, a common cause of morbidity especially among children in less developed countries, is measured by the number of eggs per urine. Typically a large proportion of individuals are non-egg excretors, leading to a large number of zeros. Control strategies require better understanding of its epidemiology, hence appropriate methods to model infection prevalence and intensity are crucial, particularly if such methods add value to targeted implementation of interventions.

Methods

We consider data that were collected in a cluster randomized study in 2004 in Chikhwawa district, Malawi, where eighteen (18) villages were selected and randomised to intervention and control arms. We developed a two-part model, with one part for analysis of infection prevalence and the other to model infection intensity. In both parts of the model we adjusted for age, sex, education level, treatment arm, occupation, and poly-parasitism. We also assessed for spatial correlation in the model residual using variogram analysis and mapped the spatial variation in risk. The model was fitted using maximum likelihood estimation.

Results and discussion

The study had a total of 1642 participants with mean age of 32.4 (Standard deviation: 22.8), of which 55.4 % were female. Schistosomiasis prevalence was 14.2 %, with a large proportion of individuals (85.8 %) being non-egg excretors, hence zero-inflated data. Our findings showed that S. haematobium was highly localized even after adjusting for risk factors. Prevalence of infection was low in males as compared to females across all the age ranges. S. haematobium infection increased with presence of co-infection with other parasite infection. Infection intensity was highly associated with age; with highest intensity in school-aged children (6 to 15 years). Fishing and working in gardens along the Shire River were potential risk factors for S. haematobium infection intensity. Intervention reduced both infection intensity and prevalence in the intervention arm as compared to control arm. Farmers had high infection intensity as compared to non farmers, despite the fact that being a farmer did not show any significant association with probability of infection.These results evidently indicate that infection prevalence and intensity are associated with risk factors differently, suggesting a non-singular epidemiological setting. The dominance of agricultural, socio-economic and demographic factors in determining S. haematobium infection and intensity suggest that disease transmission and control strategies should continue centring on improving socio-economic status, environmental modifications to control S. haematobium intermediate host snails and mass drug administration, which may be more promising approaches to disease control in high intensity and prevalence settings.  相似文献   

20.

Background

Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4–8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.

Methods and Findings

To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.

Conclusions

These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号