首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

2.
Several factors affecting erythritol production from glycerol by Yarrowia lipolytica Wratislavia K1 strain were examined in batch fermentations. Ammonium sulfate, monopotassium phosphate, and sodium chloride were identified as critical medium components that determine the ratio of polyols produced. The central composite rotatable experimental design was used to optimize medium composition for erythritol production. The concentrations of ammonium sulfate, monopotassium phosphate, and sodium chloride in the optimized medium were 2.25, 0.22, and 26.4 g L?1, respectively. The C:N ratio was found as 81:1. In the optimized medium with 100 g L?1 of glycerol the Wratislavia K1 strain produced 46.9 g L?1 of erythritol, which corresponded to a 0.47 g g?1 yield and a productivity of 0.85 g L?1 hr?1. In the fed-batch mode and medium with the total concentration of glycerol at 300 g L?1 and C:N ratio at 81:1, 132 g L?1 of erythritol was produced with 0.44 g g?1 yield and a productivity of 1.01 g L?1 hr?1.  相似文献   

3.
The tryptophan photooxidation product 6-formylindolo[3,2-b]carbazole (FICZ) has been proposed as a physiological ligand for the mammalian aryl hydrocarbon receptor (AHR), which it binds with high-affinity, inducing expression of cytochrome P450 1A1 (CYP1A1). We investigated whether the response to FICZ is evolutionarily conserved in vertebrates by measuring FICZ binding to two zebrafish AHRs (AHR1B and AHR2) and its ability to induce zebrafish CYP1 genes (CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1) in vivo. Exposure of zebrafish embryos (48 h-post-fertilization; hpf) to 10 nM FICZ for 6 h caused strong induction of CYP1A mRNA and a statistically significant but modest induction of CYP1B1 and CYP1C1. Neither CYP1C2 nor CYP1D1 expression was induced by FICZ under the conditions of dose, time or developmental stage examined here. CYP1A induction was significantly greater after 6 h than after 12 h of exposure to FICZ, suggesting a rapid degradation of inducer. The 6-h EC50 values for induction of CYP1A and CYP1B1 by FICZ were 0.6 and 0.5 nM compared to 72-h EC50 values of 2.3 and 2.7 nM for PCB126, indicating that in zebrafish embryos FICZ is a more potent inducer than PCB126. FICZ at 10 nM was able to completely displace binding of 2,3,7,8-tetrachloro-1,6[3H]-dibenzo-p-dioxin to in vitro-expressed zebrafish AHR2 and AHR1B. Inhibition of AHR2 translation in zebrafish embryos by an AHR2-specific morpholino antisense oligonucleotide decreased the induction of CYP1A and CYP1B1 by FICZ and by PCB126. Together, these results demonstrate that FICZ is a potent AHR agonist in zebrafish, inducing expression of multiple CYP1 genes largely through AHR2. Evolutionary conservation of the response to FICZ is consistent with a possible role as an endogenous signaling molecule acting through the AHR.  相似文献   

4.
Using mature cotyledonary explants of Fraxinus mandshurica, an efficient plant regeneration system was developed via somatic embryogenesis. More than 67 % of mature cotyledons of zygotic embryos yielded 23–159 somatic embryos (SEs) per explant when incubated on medium consisting of half-strength Murashige and Skoog (MS) salts and vitamins (MS1/2) supplemented with 8.88 μM 6-benzyladenine (BA), 26.84 μM naphthaleneacetic acid (NAA), 75 g L?1 sucrose, and 400 mg L?1 casein hydrolysate (CH). Approximately, 82 % of induced SEs were observed on browning cotyledonary explants. Histological studies of cotyledon explants at various stages of somatic embryogenesis revealed that the SEs originated from single epidermal cells and developed to the globular, heart, torpedo, and cotyledonary stage embryos. Secondary somatic embryos (SSEs) formed on the surface of radicle tips of the SEs. Addition of low concentrations of NAA and 200–400 mg L?1 CH to MS1/2 medium increased SSE induction. Cotyledonary SSEs were cultured on MS1/2 medium with 10 mM abscisic acid in the presence of light to promote maturation, and >92 % of mature SSEs were able to germinate with normal shoots. After 8 weeks in culture in the presence of light on medium with one-third of the MS macroelements as well as 0.06 μM NAA, >94 % of the germinated SSEs converted into plantlets. Plantlets acclimatized successfully to ex vitro conditions and developed normal phenotypes under field conditions.  相似文献   

5.
An improved protocol for plant regeneration via somatic embryogenesis was developed using mature macaw palm (Acrocomia aculeata) zygotic embryos as initial explant. For induction of the embryogenic callus (EC), two basic media (BM) were tested consisting of Murashige and Skoog and Eeuwens (Y3) salts with 30 g L?1 sucrose, 0.5 g L?1 glutamine and 2.5 g L?1 Phytagel. The 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6-trichloro-picolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) auxins were added to the culture media at concentrations of 0, 1.5 or 3.0 mg L?1. After 240 days, the embryogenic calli were transferred to the respective BM media with auxin concentrations reduced to 0.5 or 1.0 mg L?1 in order to differentiate the somatic embryos (SEs). Plant regeneration was performed on the BM media without growth regulators. Embryogenic calli were observed after 180 days of culture and in all treatments with auxin. The Y3 medium showed the best EC formation results (60.8 %). These calli showed yellowish coloration, compact consistency and nodular aspect. After 60 days in differentiation medium, SEs were verified in different stages of development. Histological analysis showed that the SEs were formed from a nodular EC. The SEs generally presented unicellular origin with suspensor formation, and at the end of development, bipolar embryos were observed. The plant regeneration frequency reached levels up to 31.9 % when using induction medium consisting of Y3 associated to 1.5 mg L?1 of 2,4-D and the subsequent auxin reduction to 0.5 mg L?1 in the differentiation stage. Regenerated plants showed normal development, with root and aerial part growth.  相似文献   

6.
The influence of vetiver grass (Vetiveria zizanioides) on the fate of endosulfan was studied using a vertisol and a lixisol soils from cotton-growing areas of Burkina Faso. Endosulfan adsorption isotherms were prepared for planted and unplanted soils. Pot experiments were then conducted for six months. For both soils, endosulfan adsorption was higher on planted soils (Kf= 6.53–9.73 mg1–nLnkg–1) than on unplanted soils (6.27–7.24 mg1–nLnkg–1). In unplanted soils, vertisol adsorbed more endosulfan than lixisol. From the pot experiments, the estimated half-lives of endosulfan in unplanted soils (40.6 to 43.1 days) were higher than in planted soils (34.5 to 40.6 days) containing a greater number of endosulfan-degrading microorganisms. Six months after treatment, endosulfan was not detected in soils. The effectiveness of vetiver in promoting adsorption and the disappearance of endosulfan in both studied soils should be validated on the cotton plot scale in Burkina Faso.  相似文献   

7.
Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality, swimming ability, metamorphosis and growth of juvenile recruits) of the massive coral Platygyra acuta in Hong Kong. In the first four experiments, coral gametes and larvae were exposed to different Cu doses (0–200 μg L?1, apart from the fertilization assay in which 0–1000 μg L?1 was used) and temperature treatments (ambient and ambient +2 or +3 °C as a thermal stress treatment) following a factorial experimental design. Exposure time was 5 h for the fertilization assay and 48 h for the other experiments. The last experiment on growth of coral recruits was conducted over 56 d with 0–80 μg L?1 Cu used. Cu significantly reduced percent fertilization success, percentage of active swimming larvae and larval survivorship (EC50s, the half maximal effective concentrations, for percent fertilization success and percentage of active swimming larvae were 92–145 and 45–47 μg L?1 respectively. While LC50, the lethal concentration that kills 50% of the population, was 101–110 μg L?1), while growth of coral recruits was not affected at 80 μg L?1 Cu for 56 d. No settling cues were used in the settlement experiment. In their absence, percent metamorphosis increased with Cu doses, in sharp contrast to earlier findings. Settlement and metamorphosis may thus be strategies for coral larvae to escape from Cu toxicity. Thermal treatment did not significantly affect any experimental end points. This is likely because the thermal regimes used in the experiments were within the range experienced by local corals. The high variability in Cu toxicities indicates differential susceptibilities of the various life-history stages/processes of P. acuta. The level of Cu tolerance was also markedly higher than that reported in the literature for other coral species. This provides evidence to suggest possible adaptation of this species to survive in a highly polluted marine environment like that in Hong Kong.  相似文献   

8.
This study is the first to examine the circadian rhythms of melatonin in Eriocheir sinensis and Palaemonetes sinensis, two economically important crustaceans. We collected haemolymph and optic lobes from both species every 4 h over a whole day cycle. Melatonin content was measured with high-performance liquid chromatography. E. sinensis haemolymph exhibited significant (p < 0.05) peaks in melatonin at 16:00 (0.180 ± 0.020 μg·mL?1) and 24:00 (0.244 ± 0.055 μg·mL?1), while eyestalks had significant peaks at 16:00 (72.377 ± 18.100 μg·eyestalk?1) and 24:00 (98.756 ± 30.271 μg·eyestalk?1). In P. sinensis, melatonin peaked significantly only at 16:00 in optic lobes (12.493 ± 1.475 μg·eyestalk?1) (p < 0.05); no significant peaks were present in haemolymph. Thus, both E. sinensis and P. sinensis exhibit species-specific melatonin rhythms. Time of day should therefore be considered when examining the physiological status of both crustaceans, given the potential influence of fluctuating daily melatonin concentrations.  相似文献   

9.
In this study, a hybrid system of response surface methodology followed by genetic algorithm has been adopted to optimize the production medium for L-glutamic acid fermentation with mixed cultures of Corynebacterium glutamicum and Pseudomonas reptilovora. The optimal combination of media components for maximal production of L-glutamic acid was found to be 49.99 g L?1 of glucose, 10 g L?1 of urea, 18.06% (v/v) of salt solution, and 4.99% (v/v) of inoculum size. The experimental glutamic acid yield at optimum condition was 19.69 g L?1, which coincided well to the value predicted by the model (19.61 g L?1). Using this methodology, a nonlinear regression model was developed for the glutamic acid production. The model was validated statistically and the determination coefficient (R 2) was found to be 0.99.  相似文献   

10.
Endosulfan is one of the persistent organochlorinated pesticides used extensively throughout the world, particularly in the developing countries. Its microbial metabolic transformation product endosulfan sulphate is more toxic and persistent than the parent compound itself. In order to completely mineralize endosulfan, augmentation of soil microbial community with efficient endosulfan degradation properties could a potentially viable option. In the present study, endosulfan degrading bacterium was isolated from the agriculture-contaminated soil of Shujaabad, Multan, Pakistan by using enrichment technique. The isolated bacterial strain EN-1 (Endosulfan-1) was identified as S. maltophilia by 16S rRNA sequencing and biochemical analysis. EN-1 has demonstrated the ability to utilize endosulfan as sole sulfur source. Kinetics of endosulfan degradation was studied at various initial concentrations ranges from 5 mg/L to 100 mg/L by growth dependent and growth independent kinetic models. Biodegradation kinetics revealed that the bacterium was highly efficient in endosulfan degradation. The average values of kinetic constants i.e. Ks, and µmax were 13.73 mg/L and 0.210 h?1 respectively, while µmax/Ks ratio was 0.015. Addition of sulfur decreased the rate of degradation as the µmax/Ks was observed to reduce. GC-MS analysis revealed that the bacterium metabolised the endosulfan into non-toxic metabolite i.e. endosulfan diol. The study instigates a complete elucidation of degradation process for commercial applications.  相似文献   

11.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

12.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from concentrated lactose/whey permeate containing 211 g L?1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system, a productivity of 0.43 g L?1 h?1 was obtained which is 307 % of that achieved in a non-product removal batch reactor (0.14 g L?1 h?1) where approximately 60 g L?1 whey permeate lactose was fermented. The productivity obtained in this system is much higher than that achieved in other product removal systems (perstraction 0.21 g L?1 h?1 and gas stripping 0.32 g L?1 h?1). This membrane was also used to concentrate butanol from approximately 2.50 g L?1 in the reactor to 755 g L?1. Using this membrane, ABE selectivities and fluxes of 24.4–44.3 and 0.57–4.05 g m?2 h?1 were obtained, respectively. Pervaporation restricts removal of water from the reaction mixture thus requiring significantly less energy for product recovery when compared to gas stripping.  相似文献   

13.
Photosynthetic bacteria are known to utilize volatile fatty acids as a carbon source for growth and product formation. In this study, a new isolate, Rubrivivax benzoatilyticus PS-5, possessing self-flocculation properties, was cultivated in modified glutamate-malate (GM) medium containing glutamate and malate as carbon sources. The effect of acetic acid, propionic acid and butyric acid (at 1–4 g L?1) as co-substrates and 7.5 mM glycine, 10 mM succinic acid as precursors for 5-aminolevulinic acid (ALA) production from R. benzoatilyticus PS-5 was investigated. Among the volatile fatty acids tested, acetic acid was preferred to butyric acid and propionic acid, with the optimum concentrations of 3 g L?1, 1 g L?1 and 3 g L?1, respectively. The highest ALA production was 169.71 μM, 162.16 μM and 46.18 μM, respectively, while the highest productivity was 2.57 μM h?1, 2.25 μM h?1 and 0.96 μM h?1, respectively. The precursor was consumed completely (100 %) while the assimilation of the acetic acid and butyric acid was 62.50 % and 48.65 %, respectively. Supplementation of propionic acid (at 1–4 g l?1) had a negative effect on growth and ALA production. To increase production efficiency, the pH-control strategy (at pH 6.0–8.0) during fermentation was tested. The optimum pH was 7.0, giving the maximum ALA production of 286.18 μM and a productivity of 3.97 μM h?1. These values were 1.68-fold and 1.54-fold higher, respectively, than those under uncontrolled pH conditions.  相似文献   

14.
Biomass productivity was quantified for the marine macroalga Derbesia tenuissima cultivated outdoors at seven stocking densities from 0.25 to 8 g L?1 for 5 weeks. Total lipids and fatty acid quantity and quality was measured from samples that were freeze-dried, dried by oven (75 °C), food dehydrator (60 °C), or outdoor in the sun (40 °C) or shade (38 °C). Stocking densities of 0.25 to 2 g L?1 yielded the highest biomass productivities (>20 g dry weight m?2 day?1) with no effect on total lipid quantity (11 %), or fatty acid quantity (5.3 %) or quality at any density tested. However, there was an interactive effect of stocking density and drying technique, with a decrease of up to 40 % in polyunsaturated fatty acids in sun-dried compared to freeze-dried biomass. Notably, while fatty acid and biomass productivity may be inseparable in macroalgae, cultivation conditions have a significant carryover effect in the post-harvest delivery of high-quality bio-oils.  相似文献   

15.
Seaweeds producing natural products with in vitro efficacy against bacterial pathogens offer the opportunity for therapeutic services in fish aquaculture, for example inhibiting the growth of pathogens through the direct release of bioactive metabolites into the culture environment. The red alga Asparagopsis taxiformis was used to test this hypothesis because of its effective natural products and mechanisms to release these metabolites into the surrounding environment and because it can be cultivated intensively in land-based systems. Here we quantify the release, accumulation and residence time of the major halogenated metabolites from A. taxiformis in the cultivation medium and subsequently test the in vitro bioactivity of these water-soluble metabolites against multiple strains of the pathogenic bacterium Streptococcus iniae. The two major halogenated metabolites in A. taxiformis (bromoform and dibromoacetic acid) were released into the water and reaching steady-state concentrations of 27.7?±?1.5 μg L?1 and 4.8?±?1.3 μg L?1, respectively, under standard cultivation conditions. This water delayed the in vitro growth of the pathogenic bacteria S. iniae but did not prevent it. Increasing the levels of A. taxiformis metabolites in the water by three orders of magnitude with aqueous extracts of biomass inhibited the growth of S. iniae, but it was also toxic to fish. In an immersion challenge experiment, intermediate non-ichthyotoxic levels of A. taxiformis metabolites were ineffective as a treatment for barramundi infected by S. iniae. The evidence suggests that there is little potential for A. taxiformis bioactive metabolites to provide therapy services to fish infected with S. iniae.  相似文献   

16.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   

17.
The effect of temperature on the growth and L-lactic acid production of Lactobacillus casei G-03 was investigated in a 7-L bioreactor. It was found that the maximum specific growth rate (0.27 hr?1) and L-lactic acid concentration (160.2 g L?1) were obtained at a temperature of 41°C. Meanwhile, the maximum L-lactic acid yield, productivity, and dry cell weight were up to 94.1%, 4.44 g L?1 hr?1, and 4.30 g L?1, respectively. At lower or higher temperature, the Lactobacillus casei G-03 showed lower acid production and biomass. Moreover, the main metabolite distribution of strain G-03 response to variations in temperatures was studied. The results suggested that temperature has a remarkable effect on metabolite distribution, and the maximum carbon flux toward lactic acid at the pyruvate node was obtained at 41°C, which had the minimum carbon flux toward acetic acid.  相似文献   

18.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

19.
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L?1 compared to 59.3 g L?1), but the final formate concentration was increased by a factor of 18 (7.3 g L?1 compared to 0.4 g L?1). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood–Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood–Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.  相似文献   

20.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from mature zygotic embryos of oil palm. Embryogenic calli were induced from mature zygotic embryos of oil palm on modified Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid or picloram, alone or in combination with activated charcoal. The greatest frequency of embryogenic callus induction (97.5%) was obtained by culturing mature zygotic embryos on callus induction medium with 450 μM picloram and 2.5 g?L?1 activated charcoal. Embryogenic calli proliferated on a medium with a reduced concentration of picloram. Embryogenic calli were then subcultured on a medium supplemented with 12.3 μM 2-isopentenyladenine and 0.54 μM naphthaleneacetic acid, with subcultures at 4-wk intervals. Somatic embryos were regenerated on a medium with Murashige and Skoog macro- and micronutrients at half-strength concentrations supplemented with 20 g?L?1 sucrose, 2.5 g?L?1 activated charcoal, and 2.5 g?L?1 Phytagel. Detailed histological analysis revealed that somatic embryogenesis followed an indirect pathway. Primary calli were observed after 4–6 wk of culture and progressed to embryogenic calli at 12 wk. Embryogenic cells exhibited dense protoplasm, a high nucleoplasmic ratio, and small starch grains. Proembryos, which seemed to have a multicellular origin, formed after 16–20 wk of culture and successive cell divisions. Differentiated somatic embryos had a haustorium, a plumule, and the first and second foliar sheaths. In differentiated embryos, the radicular protrusion was not apparent because it generally does not appear until after the first true leaves emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号