首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Chan A  Nagel R 《Mutation research》2004,548(1-2):47-52
Precise excision of transposons Tn10 and mini-Tn10 is increased in the dnaB252 thermosensitive mutant of Escherichia coli K12, at the permissive temperature. DNA repair proteins like Pol II, RecF, Ruv and RecA were found to participate, to different extents, in this induced excision event. In this work we report that DNA repair-recombination protein RecBCD has a predominant role in this deletion process. The role of this and other repair proteins in DNA replication of the dnaB mutant in relation to the excision of the transposon is analyzed.  相似文献   

2.
Nagel R  Chan A 《DNA Repair》2003,2(6):727-735
In this work the involvement of polymerase II (Pol II) in the precise excision of Tn10 stimulated by a dnaB252 thermosensitive (Ts) mutant at the permissive temperature, by a uvrD mutant, or by mitomycin C (MMC) or ultraviolet (UV) light treatment, was investigated. A deltapolB::kan mutant showed a significant decrease in the excision of Tn10 induced by the dnaB mutation, or by MMC or UV treatment, indicating the participation of Pol II in this type of deletion process. However, no effect of Pol II was evidenced in the excision of Tn10 stimulated by the uvrD mutation. The effect of the polB mutation on Tn10 precise excision induced by all these treatments was compared to that of mutations in repair-recombination genes recF and recA. The results reveal that the degree of participation of these genes varies depending on the agent that stimulates the deletion event.  相似文献   

3.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

4.
High-temperature treatment of thermosensitive dna mutants lysogenic for phage lambda leads to prophage induction and release of phage (at the permissive temperature) in elongation-defective mutants of the genotypes dnaB, dnaE, and dnaG. In initiation-defective mutants no prophage induction occurs at 42 C in mutants of the genotype dnaA, whereas with a dnaC mutant as well as with strain HfrH 252 (map position not yet known) phages are released at 42 C. DNA degradation at the replication fork at 42 C is observed in all dnaB(lambda) mutants tested, but not in mutants of the genotypes dnaE(lambda) and dnaG(lambda). Therefore, degradation of replication fork DNA is not a prerequisite for prophage induction.  相似文献   

5.
Induction of precise excision of transposons Tn1 and Tn10 from the genes met::Tn1 and cys::Tn10 by chemical agents, having mutagenic and DNA damaging activities, has been studied. The drugs dioxydin, NMU, photrin, phopurine, thiophosphamid, rongeron as well as sodium azide, 2-NP, DDDTDP are shown to differ in their ability to stimulate the precise excision of transposons of different classes and in the efficiency of stimulated process. Results of the present paper are in proof of the possible using of experimental model, based on registering the precise excision of transposons, for screening the mutagenic and cancerogenic activities of chemical agents from the environment.  相似文献   

6.
Escherichia coli C strains containing different deoxyribonucleic acid (DNA) synthesis mutations have been tested for their support of the DNA synthesis of bacteriophage P2 and its satellite phage P4. Bacteriophage P2 requires functional dnaB, dnaE, and dnaG E. coli gene products for DNA synthesis, whereas it does not require the products of the dnaA, dnaC, or dnaH genes. In contrast, the satellite virus P4 requires functional dnaE and dnaH gene products for DNA synthesis and does not need the products of the dnaA, dnaB, dnaC, and dnaG genes. Thus the P2 and P4 genomes are replicated differently, even though they are packaged in heads made of the same protein.  相似文献   

7.
In Escherichia coli K-12, the RecA- and transposase-independent precise excision of transposons is thought to be mediated by the slippage of the DNA polymerase between the two short direct repeats that flank the transposon. Inactivation of the uup gene, encoding an ATP-binding cassette (ABC) ATPase, led to an important increase in the frequency of precise excision of transposons Tn10 and Tn5 and a defective growth of bacteriophage Mu. To provide insight into the mechanism of Uup in transposon excision, we purified this protein, and we demonstrated that it is a cytosolic ABC protein. Purified recombinant Uup binds and hydrolyzes ATP and undergoes a large conformational change in the presence of this nucleotide. This change affects a carboxyl-terminal domain of the protein that displays predicted structural homology with the socalled little finger domain of Y family DNA polymerases. In these enzymes, this domain is involved in DNA binding and in the processivity of replication. We show that Uup binds to DNA and that this binding is in part dependent on its carboxyl-terminal domain. Analysis of Walker motif B mutants suggests that ATP hydrolysis at the two ABC domains is strictly coordinated and is essential for the function of Uup in vivo.  相似文献   

8.
The multimer resolution system (mrs) of the broad-host-range plasmid RP4 has been exploited to develop a general method that permits the precise excision of chromosomal segments in a variety of gram-negative bacteria. The procedure is based on the site-specific recombination between two directly repeated 140-bp resolution (res) sequences of RP4 effected by the plasmid-borne resolvase encoded by the parA gene. The efficiency and accuracy of the mrs system to delete portions of chromosomal DNA flanked by res sites was monitored with hybrid mini-Tn5 transposons in which various colored (beta-galactosidase and catechol 2,3 dioxygenase) or luminescent (Vibrio harveyi luciferase) phenotypic markers associated to res sequences were inserted in the chromosome of the target bacteria and exposed in vivo to the product of the parA gene. The high frequencies of marker excision obtained with different configurations of the parA expression system suggested that just a few molecules of the resolvase are required to achieve the site-specific recombination event. Transient expression of parA from a plasmid unable to replicate in the target bacterium was instrumental to effect differential deletions within complex hybrid transposons inserted in the chromosome of Pseudomonas putida. This strategy permits the stable inheritance of heterologous DNA segments virtually devoid of the sequences used initially to select their insertion.  相似文献   

9.
UV irradiation induced the precise excision of Tn10 inserted in met, trp or srl in a Salmonella typhimurium strain; mitomycin C was also found to induce the frequency of precise excision of Tn10 from srl or met. Precise excision of Tn10 was not increased by either UV or mitomycin C in a recA mutant. Similarly, a recA mutant derived from a uvrD strain showed a drastic reduction in the high spontaneous levels of precise excision of Tn10 of this strain. These results indicate that recA is involved in the increased precise excision of Tn10. In contrast to point mutations excision of Tn10 was found to be UV inducible in a top mutant.  相似文献   

10.
C. J. Saveson  S. T. Lovett 《Genetics》1997,146(2):457-470
Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways.  相似文献   

11.
Precise excision of transposon Tn10, as judged by reversion of Salmonella typhimurium strain LT2 trp1014::Tn10 to Trp+, was not detectably enhanced following exposure to 9-aminoacridine, 5-azacytidine or mitomycin C in conventional treat-and-plate assays. By contrast, 7/13 chemicals, including 5-azacytidine and mitomycin C, were found to be capable of enhancing precise excision of Tn10 when tested in modified fluctuation assays. Despite earlier reports, precise excision is one activity of transposons which is not therefore refractory to enhancement by chemical mutagens.  相似文献   

12.
The plasmid-transposon Tn9-322 was constructed by inverted transposition from the pBR322::Tn9 plasmid. The precise excision of the Tn9-322 transposon from the proB gene site can proceed by the Campbell's model. This fact was demonstrated by appearance of the plasmid-transposons after their precise excision. They contain two IS1 elements flanking a short direct repeat of the target DNA. The recombinational mechanism of precise excision of Tn9 type transposons seems not to be alternative but looks as an additional one to a well-known slippage mechanism proved for Tn5 and Tn10.  相似文献   

13.
We describe three related DNA alterations associated with transposon Tn10: precise excision of Tn10, nearly precise excision of Tn10 and precise excision of the nearly precise excision remnant. DNA sequence analysis shows that each of these alterations results in excision of all or part of the Tn10 element, and each involves specific repeat sequences at or near the ends of the element. Furthermore, all three events are structurally analogous: in each case, excision occurs between two short direct-repeat sequences, with resulting deletion of all intervening material plus one copy of the direct repeat; and in all three cases, the direct repeats involved occur at either end of an inverted repeat. Analysis of mutant Tn10 elements and characterization of bacterial host mutations suggest that all three types of excision events occur by pathways that are fundamentally distinct from the pathway(s) for Tn10-promoted transposition and other DNA rearrangements (deletions and inversions) actively promoted by the element. In addition, precise excision and nearly precise excision appear to occur by very closely related or identical pathways; and several lines of evidence suggest that the 1400 bp inverted repeats at the ends of Tn10 may play a structural role in both of these events. The third excision event appears to occur by yet another pathway.  相似文献   

14.
Suppressor mutations located within dnaA can suppress the temperature sensitivity of a dnaZ polymerization mutant, indicating in vivo interaction of the products of these genes. The suppressor allele of dnaA [designated dnaA(SUZ, Cs)] could not be introduced, even at the permissive temperature, by transduction into temperature-sensitive (Ts) dnaC or dnaG recipients; it was transduced into dnaB(Ts) and dnaE(Ts) strains but at very low frequency. Recipient cells which were dnaA+ dnaE(Ts) were killed by the incoming dnaA(SUZ, Cs) allele, and it is presumed that combinations of dnaA(SUZ, Cs) with dnaB(Ts), dnaC(Ts), or dnaG(Ts) are lethal also. In one specific case, the lethality required the presence of three alleles: the incoming dnaA suppressor mutation, the resident dnaA+ gene, and the dnaB(Ts) gene. This was shown by the fact that dnaB(Ts) could readily be introduced into a dnaA(SUZ, Cs) dnaB+ recipient. That is, in the absence of dnaA+, the dnaA suppressor and dnaB(Ts) double mutant was stable. One model to explain these results proposes that the dnaA protein functions not only in initiation but also in the replication complex which contains multiple copies of dnaA and other replication factors.  相似文献   

15.
16.
The Escherichia coli mutator mutD5 is a conditional mutator whose strength is moderate when the strain is growing in minimal medium but very strong when it is growing in rich medium. The primary defect of this strain resides in the dnaQ gene, which encodes the epsilon (exonucleolytic proofreading) subunit of the DNA polymerase III holoenzyme. In one of our mutD5 strains we discovered a mutation that suppressed the mutability of mutD5. Interestingly, the level of suppression was strong in minimal medium but weak in rich medium. The mutation was localized to the dnaE gene, which encodes the alpha (polymerase) subunit of the DNA polymerase III holoenzyme. This mutation, termed dnaE910, also conferred improved growth of the mutD5 strain and caused increased temperature sensitivity in both wild-type and dnaQ49 backgrounds. The reduction in mutator strength by dnaE910 was also observed when this allele was placed in a mutL, a mutT, or a dnaQ49 background. The results suggest that dnaE910 encodes an antimutator DNA polymerase whose effect might be mediated by improved insertion fidelity or by increased proofreading via its effect on the exonuclease activity.  相似文献   

17.
The minimal region required for expression of the dnaE gene of Escherichia coli has been determined relative to a detailed restriction endonuclease map. This has been accomplished by analysis of Bal 31 exonuclease-generated deletions from the termini of the E. coli DNA contained in plasmid pMWE303 , a plasmid that we have previously demonstrated to contain the dnaE gene (M. M. Welch and C. S. McHenry , J. Bacteriol . 152:351-356, 1982). The competence of these deletion-containing plasmids in expressing the alpha subunit of DNA polymerase III holoenzyme has been determined by their ability both to complement a dnaE mutant and to direct the synthesis of a complete alpha subunit. The carboxyl-terminal coding region of dnaE has been identified through the detection of partial alpha polypeptides encoded by plasmids containing deletions from one end of the gene. This approach has permitted the precise determination of both termini of the dnaE gene and the determination of the orientation of the gene within the E. coli chromosome.  相似文献   

18.
DNA-based transposable elements, or DNA transposons, transpose in a cut-and-paste fashion, involving excision from the chromosome. If this process affects the function of a host gene and the excision rate is high, any gene associated with such an element would clearly be in a genetically "unstable" state, and there are many examples of unstable genes in various organisms. However, none have hitherto been reported in vertebrates. We here document the finding of an unstable mutant gene in the medaka fish, Oryzias latipes, a useful model animal for vertebrate genetics and evolutionary studies. In an inbred strain, excision of the Tol2 element inserted in a pigmentation gene occurs spontaneously, giving rise to different heritable phenotypes and new mutant genes that carry different excision footprint sequences. The phenotypic mutation rate is as high as 2% per gamete, representing a 1000-fold increase from spontaneous mutation rates so far determined with the same organism. With mutations caused by insertion, and then excision, of transposons, one can no longer recognize participation of transposons in their generation. Thus, the impact of DNA transposons on vertebrate genomes may be, and may have been, larger than commonly supposed.  相似文献   

19.
We found that transducing phages carrying the gal or bio regions of the Escherichia coli genome were formed during in vitro packaging of endogenous lambda DNA. Structural analysis of the transducing phage genomes indicated that they were formed by abnormal excision of lambda prophage. Formation of transducing phages was stimulated by oxolinic acid, an inhibitor of DNA gyrase, implying that DNA gyrase participates in the abnormal excision of lambda prophage. When pBR322 DNA was added to the reaction mixture, transducing phages into which pBR322 had been inserted were produced at a high frequency. This reaction was also stimulated by oxolinic acid. Sequence analyses revealed that pBR322 is inserted into the sites of abnormal excision of the prophage. These results show that transducing phages can be formed by DNA gyrase-dependent illegitimate recombination in an in vitro system and that secondary recombination takes place frequently at the site where the first recombination occurs.  相似文献   

20.
The gal3 mutation is an insertion of a DNA sequence in the operator-promoter region of the galactose operon of E. coli. It reverts spontaneously to produce three kinds of gal+ revertants, which are: (i) stable and inducible, (ii) stable and constitutive, and (iii) unstable and constitutive. The constitutive revertants also show drastically reduced frequencies of transduction with lambda. The mechanism by which these reversions occur has remained unknown. It is proposed that the stable and inducible revertants arise by accurate excision of the insertion sequence. The unstable and constitutive revertants arise by tandem duplications of the gal operon in such a way that the structural genes of the extra copy of gal operon become connected to a different promoter. The resulting tandem configuration (gal3 ETK...P'E'T'K') permits constitutive expression and gal3 segregation (by internal recombination) simultaneously. The proposal was tested by comparison of the buoyant densities in CsCl of derivatives of a lambdagal phage carrying gal+, gal3, and the inducible and constitutive revertants. The densities of the inducible revertants were identical to the wild type, and the slight increase in density found to be associated with the gal3 insertion was missing. It was concluded that inducible revertants arise by excision of the inserted sequence. In contrast, lysates of a constitutive revertant exhibited several anomalous properties. The lysates contained a small quantity of phage whose density was identical to lambdagal3, produced few gal+ transductants (10(-3)-10(-4) of a normal HFT lysate), and the transductants were stable and constitutive. In turn, these abnormal transductants produced lysates which showed no lambdagal particles on centrifugation, and no transducing activity whatsoever. These anomalous properties of the constitutive revertant were attributed to the failure of lambda to package the DNA duplication efficiently. Transduction experiments with P1 (which can package more DNA than lambda) show that the unstable, constitutive reversions were located adjacent to prophage lambda. Segregation of the gal and lambda markers among the gal+ transductants was in accordance with the pattern expected for a duplication. Introduction of a recA marker resulted in stabilization of the reversion without affecting its constitutive expression. It was concluded that the unstable, constitutive reversion was a tandem duplication. It is further proposed that the stable, constitutive class of revertants might represent inverted (gal3 ETK...K'T'E'P') or partial tandem (gal3 ET...E'T'K') duplications of the gal operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号