首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

2.
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.  相似文献   

3.
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin.  相似文献   

4.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

5.
6.
Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, may augment metabolic and vascular actions of insulin. Therefore, we investigated effects of EGCG treatment to simultaneously improve cardiovascular and metabolic function in spontaneously hypertensive rats (SHR; model of metabolic syndrome with hypertension, insulin resistance, and overweight). In acute studies, EGCG (1-100 microM) elicited dose-dependent vasodilation in mesenteric vascular beds (MVB) isolated from SHR ex vivo that was inhibitable by N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide synthase antagonist) or wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor]. In chronic studies, 9-wk-old SHR were treated by gavage for 3 wk with EGCG (200 mg.kg(-1).day(-1)), enalapril (30 mg.kg(-1).day(-1)), or vehicle. A separate group of SHR receiving L-NAME (80 mg/l in drinking water) was treated for 3 wk with either EGCG or vehicle. Vasodilator actions of insulin were significantly improved in MVB from EGCG- or enalapril-treated SHR (when compared with vehicle-treated SHR). Both EGCG and enalapril therapy significantly lowered systolic blood pressure (SBP) in SHR. EGCG therapy of SHR significantly reduced infarct size and improved cardiac function in Langendorff-perfused hearts exposed to ischemia-reperfusion (I/R) injury. In SHR given L-NAME, beneficial effects of EGCG on SBP and I/R were not observed. Both enalapril and EGCG treatment of SHR improved insulin sensitivity and raised plasma adiponectin levels. We conclude that acute actions of EGCG to stimulate production of nitric oxide from endothelium using PI 3-kinase-dependent pathways may explain, in part, beneficial effects of EGCG therapy to simultaneously improve metabolic and cardiovascular pathophysiology in SHR. These findings may be relevant to understanding potential benefits of green tea consumption in patients with the metabolic syndrome.  相似文献   

7.
Epidemiological studies show a dose-dependent relationship between green tea consumption and reduced risk for type 2 diabetes and cardiovascular disease. Bioactive compounds in green tea including the polyphenol epigallocatechin 3-gallate (EGCG) have insulin-mimetic actions on glucose metabolism and vascular function in isolated cell culture studies. The aim of this study is to explore acute vascular and metabolic actions of EGCG in skeletal muscle of Sprague–Dawley rats. Direct vascular and metabolic actions of EGCG were investigated using surgically isolated constant-flow perfused rat hindlimbs. EGCG infused at 0.1, 1, 10 and 100 μM in 15 min step-wise increments caused dose-dependent vasodilation in 5-hydroxytryptamine pre-constricted hindlimbs. This response was not impaired by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the AMP-kinase inhibitor Compound C. The nitric oxide synthase (NOS) inhibitor NG-Nitro-l-Arginine Methyl Ester (L-NAME) completely blocked EGCG-mediated vasodilation at 0.1–10 μM, but not at 100 μM. EGCG at 10 μM did not alter muscle glucose uptake nor did it augment insulin-stimulated muscle glucose uptake. The acute metabolic and vascular actions of 10 μM EGCG in vivo were investigated in anaesthetised rats during a hyperinsulinemic-euglycemic clamp (10 mU min−1 kg−1 insulin). EGCG and insulin both stimulated comparable increases in muscle microvascular blood flow without an additive effect. EGCG-mediated microvascular action occurred without altering whole body or muscle glucose uptake. We concluded that EGCG has direct NOS-dependent vasodilator actions in skeletal muscle that do not acutely alter muscle glucose uptake or enhance the vascular and metabolic actions of insulin in healthy rats.  相似文献   

8.
Endothelial nitric-oxide synthase (eNOS) is phosphorylated at Ser-1179 (bovine sequence) by Akt after growth factor or shear stress stimulation of endothelial cells, resulting in increased eNOS activity. Purified eNOS is also phosphorylated at Thr-497 by purified AMP-activated protein kinase, resulting in decreased eNOS activity. We investigated whether bradykinin (BK) stimulation of bovine aortic endothelial cells (BAECs) regulates eNOS through Akt activation and Ser-1179 or Thr-497 phosphorylation. Akt is transiently activated in BK-stimulated BAECs. Activation is blocked completely by wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase, suggesting that Akt activation occurs downstream from phosphatidylinositol 3-kinase. BK stimulates a transient phosphorylation of eNOS at Ser-1179 that is correlated temporally with a transient dephosphorylation of eNOS at Thr-497. Phosphorylation at Ser-1179, but not dephosphorylation at Thr-497, is blocked by wortmannin and LY294002. BK also stimulates a transient nitric oxide (NO) release from BAECs with a time-course similar to Ser-1179 phosphorylation and Thr-497 dephosphorylation. NO release is not altered by wortmannin. BK-stimulated dephosphorylation of Thr-497 and NO release are blocked by the calcineurin inhibitor, cyclosporin A. These data suggest that BK activation of eNOS in BAECs primarily involves deinhibition of the enzyme through calcineurin-mediated dephosphorylation at Thr-497.  相似文献   

9.
Multiple lines of evidence, from molecular and cellular to epidemiological, have implicated nicotinic transmission in the pathogenesis of Alzheimer's disease (AD). Here we show the signal transduction mechanism involved in nicotinic receptor-mediated protection against beta-amyloid-enhanced glutamate neurotoxicity. Nicotine-induced protection was suppressed by an alpha7 nicotinic receptor antagonist (alpha-bungarotoxin), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002 and wortmannin), and a Src inhibitor (PP2). Levels of phosphorylated Akt, an effector of PI3K, and Bcl-2 were increased by nicotine. The alpha7 nicotinic receptor was physically associated with the PI3K p85 subunit and Fyn. These findings indicate that the alpha7 nicotinic receptor transduces signals to PI3K in a cascade, which ultimately contributes to a neuroprotective effect. This might form the basis of a new treatment for AD.  相似文献   

10.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, statins, provide beneficial effects independent of their lipid-lowering effects. One beneficial effect appears to involve acute activation of endothelial nitric oxide (NO) synthase (eNOS) and increased NO release. However, the mechanism of acute statin-stimulated eNOS activation is unknown. Therefore, we hypothesized that eNOS activation may be coupled to altered eNOS phosphorylation. Bovine aortic endothelial cells (BAECs), passages 2-6, were treated with either lovastatin or pravastatin from 0 to 30 min. eNOS phosphorylation was examined by Western blot by use of phosphospecific antibodies for Ser-1179, Ser-635, Ser-617, Thr-497, and Ser-116. Statin stimulation of BAECs increased eNOS phosphorylation at Ser-1179 and Ser-617, which was blocked by the phosphatidylinositol 3-kinase (PI3-kinase)/Akt inhibitor wortmannin, and at Ser-635, which was blocked by the protein kinase A (PKA) inhibitor KT-5720. Statin treatment of BAECs transiently increased NO release by fourfold, measured by cGMP accumulation, and was attenuated by N-nitro-l-arginine methyl ester, wortmannin, and KT-5720 but not by mevalonate. In conclusion, these data demonstrate that eNOS is acutely activated by statins independent of HMG-CoA reductase inhibition and that in addition to Ser-1179, eNOS phosphorylation at Ser-635 and Ser-617 through PKA and Akt, respectively, may explain, in part, a mechanism by which eNOS is activated in response to acute statin treatment.  相似文献   

11.
Insulin-like growth factor I (IGF-I) has been previously shown to promote survival of oligodendrocyte progenitors; however, the underlying mechanisms are not fully understood. Our aim was to investigate the involvement of phosphatidylinositol 3-kinase (PI3K), MEK1, and Src family tyrosine kinases in IGF-I-mediated oligodendrocyte progenitor survival. In agreement with previous studies, IGF-I promoted cell survival. We show that IGF-I prevented apoptosis induced by growth factor deprivation in a PI3K-dependent and MEK/ERK-independent manner. In addition, IGF-I activated Akt while inhibiting caspase-3 activation, and these effects were reversed by the PI3K inhibitors LY 294002 and wortmannin, but not by the MEK1 inhibitor PD 98059. Interestingly, PP2, a specific Src-like kinase inhibitor, blocked the tyrosine phosphorylation of Src, Fyn, and Lyn and IGF-I-stimulated Akt activation, yet had no significant effects on caspase-3 activation or progenitor survival. To further determine whether Akt is required for IGF-I-mediated survival, oligodendrocyte progenitors were transduced with defective Akt mutants or treated with an Akt inhibitor. Although the Akt mutants and inhibitor decreased Akt activity and reduced basal cell survival, IGF-I could partially rescue oligodendrocyte progenitors by decreasing caspase-3 activation. These results suggest that 1) PI3K is essential for IGF-I-promoted cell survival, 2) downstream activation of Akt-dependent and -independent pathways is involved, and 3) Src-like tyrosine kinases participate in IGF-I-induced Akt activation. Therefore, an unidentified effector(s) of PI3K appears to be involved in conferring complete IGF-I-mediated protection of oligodendrocyte progenitors.  相似文献   

12.
13.
14.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

15.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

16.
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.  相似文献   

17.
Epidemiological studies suggest that tea catechins may reduce the risk of cardiovascular disease, but the mechanisms of benefit have not been determined. The objective of the present study was to investigate the effects of epigallocatechin-3-gallate (EGCG), the major constituent of green tea, on vasorelaxation and on eNOS expression and activity in endothelial cells. EGCG (1-50 microm) induced dose-dependent vasodilation in rat aortic rings. Vasodilation was abolished by pretreatment with Ng-nitro L-arginine methyl ester. In bovine aortic endothelial cells, EGCG increased endothelial nitric oxide (eNOS) activity dose-dependently after 15 min. Treatment with EGCG induced a sustained activation of Akt, ERK1/2, and eNOS Ser1179 phosphorylation. Inhibition of extracellular signal-regulated kinase (ERK)1/2 had no influence on eNOS activity or Ser1179 phosphorylation. Simultaneous treatment of cells with selective inhibitors for cAMP-dependent protein kinase (PKA) and Akt completely prevented the increase in eNOS activity by EGCG after 15 min, indicating that both kinases act in concert. Specific phosphatidylinositol-3-OH-kinase inhibitors yielded identical results. Akt inhibition prevented eNOS Ser1179 phosphorylation, whereas inhibition of PKA did not influence Akt and eNOS Ser1179 phosphorylation. Pretreatment of endothelial cells with EGCG for 4 h markedly enhanced the increase in eNOS activity stimulated by Ca-ionomycin, suggesting that Akt accounts for prolonged eNOS activation. Treatment of cells for 72 h with EGCG did not change eNOS protein levels. Our results indicate that EGCG-induced endothelium-dependent vasodilation is primarily based on rapid activation of eNOS by a phosphatidylinositol 3-kinase-, PKA-, and Akt-dependent increase in eNOS activity, independently of an altered eNOS protein content.  相似文献   

18.
Although substantial studies have begun to explore the regulation of phosphatidylinositol 3-kinase/Akt cascade by different signalling pathways, whether protein kinase C (PKC) activity plays a crucial role remains as yet unclear. In this study, we found that in A549 and HEK293 cells non-selective PKC inhibitors Ro 31-8220 and bisindolylmaleimide VIII, and PKCbeta inhibitor LY 379196, caused Akt/PKB phosphorylation at Ser 473 and increased the upstream activator, integrin-linked kinase (ILK) activity. The increased Akt phosphorylation was blocked by phosphatidylinositol 3-kinase inhibitor wortmannin and the newly identified PIP(3)-dependent kinases (PDK) inhibitor SB 203580. In contrast to the Akt stimulation caused by PKC inhibitors, PMA attenuated Akt/PKB phosphorylation. We also found that this stimulating effect on Akt phosphorylation by PKC inhibitors was not the result of phosphatase inhibition, since treatment with PP2A, PP2B and tyrosine phosphatase inhibitors (okadaic acid, FK506 and sodium orthovanadate, respectively) had no effect. We conclude that phosphatidylinositol 3-kinase/Akt signalling pathway is regulated by PKC in a negative manner.  相似文献   

19.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

20.
Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号