首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the malate and mannitol composition of ash leaf (Fraxinus excelsior L.) xylem sap were studied in response to water deficit. Xylem sap was collected by the pressure method from the petiole of leaves sampled on irrigated and non-irrigated ash seedlings. As the leaf water potential decreased from -0.3 to -3.0 MPa, there was a significant increase in malate and mannitol xylem concentrations, and a concomitant decrease in maximal stomatal conductance. The functional significance of the increased malate and mannitol concentrations was investigated by using a transpiratory bioassay with mature detached leaves which exhibited, for stomatal conductance, the typical pattern showed by expanded leaves during dark/light transitions. Supplying detached leaves with mannitol in a range of concentrations found in the xylem sap had no effect on stomatal movements, but malate, for concentrations between 0.5 and 3 mM, was effective in preventing stomatal opening. The ability of malate to inhibit stomatal opening appeared to be rather non-specific. Two structural malate analogues, citrate and aspartate or an unrelated anion, shikimate, also inhibited this process. Given the drought-induced increase in xylem malate concentrations, and the fact that the range of malate levels required to close stomata was very similar to that of the concentrations found in the xylem sap, it has been hypothesized that malate is involved in the stomatal closure of ash leaves under drying conditions.Key words: Fraxinus excelsior: L., malate, mannitol, xylem sap, stomata, water deficit.   相似文献   

2.
We investigated the hypothesis that stomatal aperture is regulated by epidermal water status. Detached epidermal peels of Commelina communis L. or leaf disks with epidermis attached were incubated in graded solutions of mannitol (0–1.2 M) containing KCl. In isolated epidermis, guard-cell solute content of open stomata did not decrease in response to desiccation. Guard cells of closed stomata accumulated solutes to the same extent in all levels of mannitol tested. There was no evidence of stress-induced hydroactive closure nor of inhibition of hydroactive opening, even when guard cells of closed stomata were initially plasmolyzed. Hydropassive, osmometer-like, changes in stomatal aperture in the isolated epidermis were induced by addition or removal of mannitol, but these did not involve changes in guard-cell solute content. In leaf disks, stomata exhibited clear hydroactive stomatal responses. Steady-state guard-cell solute content of initially open and initially closed stomata decreased substantially with increasing mannitol. Stomata were completely closed above approx. 0.4 M mannitol, near the turgor-loss point for the bulk leaf tissue. Stomata of Commelina did not exhibit direct hydroactive responses to environmental or epidermal water status. Stomatal responses to water deficit and low humidity may be indirect, mediated by abscisic acid or other signal metabolite(s) from the mesophyll.Abbreviations ABA abscisic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

3.
Responses of abaxial and adaxial stomata of Populus trichocarpa Torr. & Gray. × P. deltoides Bartr. (ex Marsh.) cv. Unal to incident light, sudden darkening and leaf excision in the light and in the dark were studied on 5-year-old trees in the field using diffusion porometry. Stomatal closure in the dark was found to be incomplete in most cases studies. Stomata closed after leaf excision in the dark within 90 min. Stomatal closure after darkening of an entire tree or an entire branch (white the rest of the tree was in the light) was slower, and complete stomatal closure was noticed only for adaxial stomata after 3 h. Adaxial stomata were more reactive and sensitive than abaxial stomata to sudden darkening and leaf excision in the light and the dark. In all treatments, stomatal response was more responsive in mature leaves than in young, still expanding leaves.  相似文献   

4.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   

5.
Flooding induced several physiological and morphological changes in Fraxinus pennsylvanica seedlings, with stomatal closure among the earliest responses. Subsequent changes included: reduction in dry weight increment of roots, stems, and leaves; formation of hypertrophied lenticels and production of adventitious roots on submerged portions of the stem above the soil line; leaf necrosis; and leaf abscission. After 15 days of stomatal closure as a result of flooding, stomata began to reopen progressively until stomatal aperture was similar in flooded and unflooded plants. Adventitious roots began to form at about the time stomatal reopening began. As more adventitious roots formed, elongated, and branched, the stomata opened further. The formation of adventitious roots was an important adaptation for flooding tolerance as shown by the high efficiency of adventitious roots in absorption of water and in high correlation between the production of adventitious roots and stomatal reopening.  相似文献   

6.
A comparison was made of stomatal behaviour, and related phenomena,between leaves of garden pea (Pisum sativum cv. Feltham First)inoculated with powdery mildew fungus (Erysiphe pisi) and uninfectedleaves on healthy plants. Twenty four hours after inoculation,stomata opened more widely in the light in infected leaves thanin healthy leaves. Thereafter, stomatal opening was progressivelyreduced by infection and stomata failed to close completelyin the dark until, 7 d after inoculation, all movements ceasedand stomata remained partly open. Transpiration in the lightfollowed closely the pattem of stomatal opening and, after anearly increase compared with healthy controls, was progressivelyreduced by infection. Evidence is presented that transpirationfrom the fungus was less than the reduction in transpiraationfrom the leaf which was caused when development of the myceliumincreased the boundary layer resistance of the leaf. Seven daysafter inoculation, transpiration in the dark was greater frominfected leaves than from healthy leaves because of partly openstomata in the dark. Net photosynthesis in infected leaves was reduced within 24h of inoculation to a level below that found in healthy leavesand thereafter it declined progressively. The initial reductionwas due to a transient increase in photorespiration, for whenthe glycolate pathway was inhibited by a 2% O2 concentrationthere was no difference between the (gross) photosynthetic ratesof healthy and infected leaves. Changes in photorespirationrate were confirmed from the interpretation of the CO2 burston darkening. Reduced stomatal opening was a contributory causeof the reduction in net photosynthesis in the later stages ofinfection. Since the rate of gross photosynthesis, but not therate of photorespiration, of infected plants fell below thatof healthy plants, and infected plants had a higher rate ofrelease of CO2 in the dark than healthy plants from the thirdday after inoculation onwards, infected plants consume an increasinglygreater proportion of their photosynthate in respiratory processesthan do healthy plants. The CO2 compensation point of infectedplants increased at every time of sampling after inoculation.  相似文献   

7.
Closure of stomata by abscisic acid (ABA) was studied by floating leaf epidermal strips of Commelina communis L. in PIPES buffer (pH 6.8) containing a range of KCl concentrations. Control apertures were greatest at high concentrations of the salt, and the effects of ABA, in terms of closure, were most pronounced below 100 mol m-3 KCl. Stomata opened on strips floated on buffer plus 50 mol m-3 KCl and closed within 10 min when transferred to the same medium plus 0.1 mol m-3 ABA. [2-14C]ABA was used to study uptake and distribution of the hormone by the epidermal strips. It was calculated that no more than 6 fmol ABA were present per stomatal complex at the time of closure, although uptake continued thereafter. Microautoradiography indicated that radioactivity from [2-14C]ABA accumulated in the stomatal complex at or near the guard cells within 20 min. TLC was used to examine the state of the label after 1 h incubation. Efflux of label from preincubated tissue appeared to occur in three phases (t1/2=7.2 s, 4.0 min, 35.2 min). Efflux was correlated with stomatal re-opening. The results confirm that ABA can accumulate in the epidermis of C. communis.Abbreviation ABA Abscisic acid  相似文献   

8.
Stomata of yellow lupin leaves are remarkably insensitive toabscisic acid (ABA). Stomatal resistance was monitored usingboth a viscous now porometer and a diffusion porometer. Resultswere confirmed with scanning electron microscopy. When exogenousABA solutions were supplied via petioles, 10–6 M solutionshad no effect on stomatal resistance. Upper (adaxial) stomatawere not affected by 10–5 M ABA but lower stomata showed3-fold more resistance after 2 h. Stomata of both surfaces closedafter 30 min in 10–4 M ABA. Isolated epidermal peels of lupin leaves were floated on ABAsolutions yet upper surface peels showed no stomatal closingin 10–4 M ABA, while lower surface stomata closed to abarely significant extent. Stomata of intact leaves were not very sensitive to darkness,showing at most a doubling in resistance after 6 h darkness.Complete stomatal closure, however, was readily produced bywilting leaves. Hence, lupin stomata are physically capableof closing. Endogenous ABA levels of water-stressed leaves increased approximately10-fold, which corresponds to concentrations below 10 µMABA. It is concluded that ABA is unlikely to play a role incontrolling short-term stomatal response of lupins.  相似文献   

9.
Epidermal strips and leaf fragments of Commelina and leaf fragmentsof maize were incubated on solutions containing naturally-occurringor synthetic cytokinins and/or ABA. The effects of these treatmentson stomatal behaviour were assessed. Cytokinins alone did notpromote stomatal opening in either species but concentrationsof both zeatin and kinetin from 10–3 to 10–1 molm–3 caused some reversal of ABA-stimulated closure ofmaize stomata. The reversal of the ABA effect increased withincreasing cytokinin concentration. Cytokinins had no effecton ABA-stimulated closure of Commelina stomata. When appliedalone, at high concentration (10–1 mol m–3), toCommelina epidermis or leaf pieces both zeatin and kinetin restrictedstomatal opening. Key words: ABA, Cytokinins, Stomata, Maize, Commelina  相似文献   

10.
In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.  相似文献   

11.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

12.
Involvement of extracellular Ca2+ in stomatal movement through the regulation of water channels was investigated in broad bean (Vicia faba L.). Leaf peels were first incubated to open stomata, and then transferred to buffers in the presence of different CaCl2 concentrations. Stomatal status was observed under magnification and stomatal aperture (pore width/length) was measured. Stomatal closure was significantly induced and aperture oscillation occurred at lower extracellular concentrations of calcium ([Ca2+]ext), while at higher concentrations, no significant change in stomatal aperture was observed, which was similar to the response recorded with HgCl2. Lower [Ca2+]ext-induced stomatal closure could be reversed using depolarizing buffer. It is suggested that lower [Ca2+]ext regulates water channels through an indirect way and at higher concentrations, extracellular Ca2+ is involved in regulating stomatal aperture by directly influencing water channels to retard aperture change.  相似文献   

13.
Fusicoccin (FC) treatment prevents dark‐induced stomatal closure, the mechanism of which is still obscure. By using pharmacological approaches and laser‐scanning confocal microscopy, the relationship between FC inhibition of dark‐induced stomatal closure and the hydrogen peroxide (H2O2) levels in guard cells in broad bean was studied. Like ascorbic acid (ASA), a scavenger of H2O2 and diphenylene iodonium (DPI), an inhibitor of H2O2‐generating enzyme NADPH oxidase, FC was found to inhibit stomatal closure and reduce H2O2 levels in guard cells in darkness, indicating that FC‐caused inhibition of dark‐induced stomatal closure is related to the reduction of H2O2 levels in guard cells. Furthermore, like ASA, FC not only suppressed H2O2‐induced stomatal closure and H2O2 levels in guard cells treated with H2O2 in light, but also reopened the stomata which had been closed by darkness and reduced the level of H2O2 that had been generated by darkness, showing that FC causes H2O2 removal in guard cells. The butyric acid treatment simulated the effects of FC on the stomata treated with H2O2 and had been closed by dark, and on H2O2 levels in guard cells of stomata treated with H2O2 and had been closed by dark, and both FC and butyric acid reduced cytosol pH in guard cells of stomata treated with H2O2 and had been closed by dark, which demonstrates that cytosolic acidification mediates FC‐induced H2O2 removal. Taken together, our results provide evidence that FC causes cytosolic acidification, consequently induces H2O2 removal, and finally prevents dark‐induced stomatal closure.  相似文献   

14.
Patchy stomatal closure was observed in leaves of transgenic plants of Nicotiana plumbaginifolia producing antibodies that block the action of abscisic acid. Stomatal patchiness was induced by leaf detachment and subsequent water loss. Stomatal closure was followed by an irreversible reduction of maximal chlorophyll fluorescence. The degree of deviation from the A/ci-curve is correlated with steady-state diffusion conductance before leaf detachment. It is concluded that a heterogeneous sensitivity of stomata to abscisic acid is not directly involved in the induction of patchy stomatal closure.Keywords: Abscisic acid, chlorophyll fluorescence imaging, patchy stomatal closure, Nicotiana plumbaginifolia.   相似文献   

15.
Summary Pressure infiltration of water into a leaf via the stomatal pores can be used to quickly determine whether all stomata are open, or as recently described for several mesophytic and xerophytic species, whether there is a non-homogeneous distribution of stomatal opening (stomatal patchiness) on the leaf surface. Information about this phenomenon is important since the commonly used algorithms for calculation of leaf conductance from water vapor exchange measurements imply homogeneously open stomata, which in the occurrence of stomatal patchiness will lead to erroneous results. Infiltration experiments in a growth chamber with leaves of the Mediterranean evergreen shrub Arbutus unedo, carried out under simulated Mediterranean summer day conditions, where the species typically exhibits a strong midday stomatal closure, revealed a temporary occurrence of stomatal patchiness during the phase of stomatal closure in the late morning and during the stomatal reopening in the afternoon. Leaves were, however, found to be fully (i.e. homogeneously) infiltratable in the morning and in the evening. At midday during maximum stomatal closure, leaves were almost non-infiltratable. During the day, the infiltrated amount of water was found to be linearly correlated with porometer measurements of leaf conductance of the same leaves, carried out with the attached leaves immediately before infiltration.  相似文献   

16.
U. Heber  S. Neimanis  O. L. Lange 《Planta》1986,167(4):554-562
Carbon dioxide exchange, transpiration, chlorophyll fluorescence and light scattering of leaves of Lycopersicom esculentum, Helianthus annuus and Arbutus unedo were measured simultaneously before and after abscission of leaves. Scattering of a weak green measuring beam was used to monitor water fluxes across the thylakoid membranes of the mesophyll. When leaves were cut under water, stomata initially closed partially and then occasionally exhibited distinct regulatory oscillations. As stomata closed, light scattering decreased indicating water influx into the mesophyll. Stomatal oscillations were accompanied, with small but noticeable phase shifts, by oscillations of water fluxes at the thylakoid level. These fluxes could be distinguished from the water fluxes accompanying light-dependent ion pumping across the thylakoids by the concomitant chlorophyll fluorescence signals. The latter record energy-dependent ion fluxes in addition to redox changes of the electron-transport chain. As stomata closed partially after cutting a leaf under water, photosynthesis decreased. In Arbutus unedo and Helianthus annuus leaves, transient stomatal closure was insufficient to account for transient inhibition of photosynthesis which appeared to be brought about by transfer of an inhibitory solute through the petiole into the mesophyll. This solute also stimulated respiration in the dark. When leaves were cut in air, stomata opened transiently (Iwanoff effect) before wilting enforced closure. Photosynthesis followed the stomatal responses, increasing during opening and decreasing during closure.Dedicated to Professor H. Ullrich on the occasion of his 85th birthday  相似文献   

17.
The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress.  相似文献   

18.
Effects of 10−3m, 10−4m, and 10−5m phenylmercuric acetate (PMA) on stomatal movement and transpiration of excised Betula papyrifera leaves were investigated. Duco cement leaf prints and transpiration decline curves were used for the analysis of stomatal condition. PMA induced stomatal closure and decreased transpiration. Stomata of leaves treated with any of the 3 PMA concentrations closed earlier and at a higher relative water content than did stomata of untreated leaves. As determined from transpiration decline curves, PMA at 10−3m caused an increase in apparent “cuticular” transpiration. However, the increase appeared to result largely from some PMA-poisoned stomata which remained open for prolonged periods. Considerable PMA toxicity was observed, with 10−3m and 10−4m concentrations causing browning of leaves. PMA treatment caused a decrease in chlorophyll content, even at a low PMA concentration (10−5m) which influenced stomatal response only slightly and did not cause evident browning of leaves. The time and degree of stomatal opening varied with stomatal size. Large stomata tended to open earlier and close later than small stomata. Hence, in Betula papyrifera stomata of various size classes were considered as physiologically different populations.  相似文献   

19.
Malate, along with potassium and chloride ions, is an important solute for maintaining turgor pressure during stomatal opening. Although malate is exported from guard cells during stomatal closure, there is controversy as to whether malate is also metabolised. We provide evidence that phosphoenolpyruvate carboxykinase (PEPCK), an enzyme involved in malate metabolism and gluconeogenesis, is necessary for full stomatal closure in the dark. Analysis of the Arabidopsis PCK1 gene promoter indicated that this PEPCK isoform is specifically expressed in guard cells and trichomes of the leaf. Spatially distinct promoter elements were found to be required for post-germinative, vascular expression and guard cell/trichome expression of PCK1. We show that pck1 mutant plants have reduced drought tolerance, and show increased stomatal conductance and wider stomatal apertures compared with the wild type. During light-dark transients the PEPCK mutant plants show both increased overall stomatal conductance and less responsiveness of the stomata to darkness than the wild type, indicating that stomata get 'jammed' in the open position. These results show that malate metabolism is important during dark-induced stomatal closure and that PEPCK is involved in this process.  相似文献   

20.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号